欢迎访问过程工程学报, 今天是

过程工程学报 ›› 2023, Vol. 23 ›› Issue (8): 1102-1117.DOI: 10.12034/j.issn.1009-606X.223094

• 新能源产业发展专栏 • 上一篇    下一篇

锂离子电池热管理技术研究进展

李嘉鑫1, 李鹏钊1, 王苗1, 陈纯1,2, 闫良玉1, 高月1,杨生宸1, 陈满满1, 赵财1, 毛景1*   

  1. 1. 郑州大学材料科学与工程学院国家低碳和环境材料设计国际合作中心,河南 郑州 450001 2. 河南省生态环境监测中心河南省环境监测技术重点实验室,河南 郑州 450046
  • 收稿日期:2023-03-30 修回日期:2023-06-21 出版日期:2023-08-28 发布日期:2023-09-01
  • 通讯作者: 毛景 maojing@zzu.edu.cn
  • 基金资助:
    河南省储能材料与过程重点实验室开放基金;河南省重点研发与推广专项

Research progress of thermal management technology for lithium-ion batteries

Jiaxin LI1,  Pengzhao LI1,  Miao WANG1,  Chun CHEN1,2,  Liangyu YAN1,  Yue GAO1, Shengchen YANG1,  Manman CHEN1,  Cai ZHAO1,  Jing MAO1*   

  1. 1. National International Cooperation Center for Low Carbon and Environmental Materials Design, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China 2. Henan Provincial Key Laboratory of Environmental Monitoring Technology, Henan Ecological Environment Monitoring Center, Zhengzhou, Henan 450046, China
  • Received:2023-03-30 Revised:2023-06-21 Online:2023-08-28 Published:2023-09-01

摘要: 高效的电池热管理技术对于锂离子电池的安全运行、长循环使用寿命以及整体成本的降低至关重要,且对推动锂离子电池的大规模应用具有重要意义。本综述详细讨论了几种主流的电池热管理技术,即空气冷却、液体冷却、新型的相变材料冷却和热电冷却技术,并对电池产热模型进行了简要阐述,最后对电池冷却技术的发展方向进行了展望。空气冷却技术结构简单,但难以保证电池组内电芯温度的一致性,不适用于大型锂离子电池组的冷却,更多应用于小型飞行电动设备和低端车型中。冷却板液冷技术的冷却效果较好,但存在冷却液泄漏风险且需要进一步提高均温性。浸没式液冷技术的冷却和均温效果显著,但价格昂贵,未来可能会更多地应用到冷却要求较高的储能电站中,而对于大多数锂离子电动汽车而言,成本更低的冷却板液冷技术是更好的选择。相变材料冷却和热电冷却技术无移动部件,在电子设备和小型动力设备领域实现了初步商业化应用,但冷却效率较低,还需要进一步优化。值得注意的是,根据用户的需求来选择合适的冷却技术是十分关键的,虽然目前没有完美的冷却方案,但可以通过复合使用多种冷却技术的方式来满足更多应用场景的热管理需求。

关键词: 锂离子电池, 电池热管理技术, 风冷, 液体冷却, 相变材料冷却, 热电冷却

Abstract: Efficient battery thermal management technology is critical to the safe operation, long cycle life, and overall cost reduction of lithium-ion batteries and is important in promoting the large-scale application of lithium-ion batteries. In this review, several mainstream battery thermal management technologies are discussed in detail, including air cooling, liquid cooling, new phase change material cooling, and thermoelectric cooling technology. The battery heat generation model is briefly described. Finally, the development direction of battery cooling technology is prospected. Air cooling technology is simple in structure, but it is difficult to ensure temperature uniformity of the cells within the battery pack and is not suitable for cooling large lithium-ion battery packs, but is more suitable for small flying electric devices and low-end electric vehicles. Cooling plate liquid cooling technology is more effective, but there is a risk of coolant leakage and the temperature uniformity needs to be further improved. Immersion liquid cooling technology offers significant cooling and temperature uniformity but is expensive and is likely to be used more often in the future in energy storage plants with high cooling requirements, while for most lithium-ion electric vehicles the lower-cost cooling plate liquid cooling technology is more suitable. Phase change material cooling and thermoelectric cooling technologies without moving parts have achieved initial commercial application in electronic equipment and small power plants, but the cooling efficiency is low and needs further refinement. It is worth noting that it is critical to choose the right cooling technology for the user's needs. While there is no perfect cooling solution, a combination of cooling technologies can be used to meet the thermal management needs of a wider range of application scenarios.

Key words: lithium ion battery, battery thermal management technology, air cooling, liquid cooling, phase change material cooling, thermoelectric cooling