欢迎访问过程工程学报, 今天是

过程工程学报 ›› 2024, Vol. 24 ›› Issue (5): 501-513.DOI: 10.12034/j.issn.1009-606X.223230

• 综述 • 上一篇    下一篇

射频感应热等离子体制备锂离子电池硅基负极材料的研究进展

杨宗献1, 董元江2,3, 刘畅2,3, 金化成2, 丁飞2, 李保强2, 白柳杨4*, 袁方利2*
  

  1. 1. 河南大学化学与分子科学学院,河南 开封 475004 2. 中国科学院过程工程研究所多相复杂系统国家重点实验室,北京 100190 3. 中国科学院大学化学工程学院,北京 100049 4. 黄淮学院能源工程学院,河南 驻马店 463800
  • 收稿日期:2023-08-25 修回日期:2023-10-19 出版日期:2024-05-28 发布日期:2024-05-28
  • 通讯作者: 袁方利 flyuan@ipe.ac.cn
  • 基金资助:
    科技部国家重点研发计划政府间合作项目;河南省中央引导地方科技发展专项

Research progress in preparation of silicon-based anode materials for lithium-ion batteries by radio-frequency induction thermal plasma

Zongxian YANG1,  Yuanjiang DONG2,3,  Chang LIU2,3,  Huacheng JIN2,  Fei DING2,  Baoqiang LI2,  Liuyang BAI4*,  Fangli YUAN2*   

  1. 1. College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China 2. State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China 3. School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China 4. College of Energy Engineering, Huanghuai University, Zhumadian, Henan 463800, China
  • Received:2023-08-25 Revised:2023-10-19 Online:2024-05-28 Published:2024-05-28
  • Contact: Fang-li YUAN flyuan@ipe.ac.cn

摘要: 硅负极凭借其高理论比容量被认为是最具有应用前景的负极材料之一,但脱嵌锂过程中较大的体积变化严重限制了其实际应用。通过将硅负极纳米化,能够显著缓解体积效应、改善导电性及提高稳定性。射频感应热等离子体具有高温、瞬冷、可控、连续等优点,是制备高纯纳米硅基负极的重要手段。本工作综述了射频感应热等离子体制备锂离子电池硅基负极材料的研究进展。首先对热等离子体技术进行简要介绍,其次重点讨论了硅纳米球(Si NSs)、硅纳米线(Si NWs)、氧化亚硅纳米线(SiO NWs)、氧化亚硅纳米网(SiO NNs)、高硅含量氧化亚硅纳米线(SiOx NWs)、硅基硅铁合金纳米球(Si/FeSi2 NPs)等几种关键材料的热等离子体法制备及其在锂离子电池负极的应用,最后对热等离子体技术的发展进行了展望。

关键词: 射频热等离子体, 锂离子电池, 硅基负极, 纳米粉体, 氧化亚硅

Abstract: As one of the next-generation anode materials with the most promising application prospects, silicon anode benefits from a high theoretical specific capacity, a sufficient working potential, abundant and inexpensive sources, environmental friendliness, safety, and dependability. However, Si will experience significant volume variations throughout the lithiation and delithiation processes. This will result in significant internal stress, which will cause issues including material pulverization, repetitive growth of the solid electrolyte interface (SEI), and electrode failure. Through the utilization of nano-silicon-based anode materials, it is possible to effectively mitigate the volume impact, enhance both conductivity and stability. The utilization of radio-frequency (RF) induction thermal plasma offers several notable benefits, including elevated temperatures, rapid cooling, precise control, and uninterrupted operation. Thermal plasma has the ability to provide particles a unique growth environment and process that is helpful in the creation of products with special morphologies, such as zero-dimensional nanospheres and one-dimensional nanowires. Additionally, the extremely high temperatures can totally evaporate raw materials, guarantee uniformity of product, and be advantageous for doping second-phase materials. Consequently, it serves as a significant method for the production of nano-silicon-based anodes with a controllable morphology and structure, as well as high purity and excellent dispersibility. This work provides a review of the scientific advancements pertaining to silicon-based anode materials for lithium-ion batteries that are fabricated using RF thermal plasma. To commence, a concise introduction is provided for the thermal plasma technology. Then, this work focuses on the synthesis of various essential materials using thermal plasma, including silicon nanospheres (Si NSs), silicon nanowires (Si NWs), silicon monoxide nanowires (SiO NWs), silicon monoxide nanonetworks (SiO NNs), high-silicon silicon suboxide nanowires (SiOx NWs), silicon-based ferrosilicon alloy nanospheres (Si/FeSi2 NPs). Furthermore, the work emphasizes the applications of these materials in the anode electrode of lithium-ion batteries. Finally, the development of thermal plasma technology is prospected.

Key words: radio frequency thermal plasma, lithium-ion battery, silicon-based anode, nano-powders, silicon monoxide