欢迎访问过程工程学报, 今天是

过程工程学报 ›› 2025, Vol. 25 ›› Issue (12): 1308-1318.DOI: 10.12034/j.issn.1009-606X.225082

• 研究论文 • 上一篇    下一篇

基于热电制冷的18650电池组热特性研究

于惠敏, 马肖娜, 严华夏*   

  1. 集美大学海洋装备与机械工程学院,福建 厦门 361021
  • 收稿日期:2025-03-19 修回日期:2025-07-05 出版日期:2025-12-28 发布日期:2025-12-29
  • 通讯作者: 严华夏 yanhuaxia@jmu.edu.cn
  • 基金资助:
    福建省自然科学基金;集美大学引进高层次人才科研启动基金

Thermal performance analysis of 18650 battery pack based on thermoelectric cooling

Huimin YU,  Xiaona MA,  Huaxia YAN*   

  1. School of Marine Equipment and Mechanical Engineering, Jimei University, Xiamen, Fujian 361021, China
  • Received:2025-03-19 Revised:2025-07-05 Online:2025-12-28 Published:2025-12-29

摘要: 热电制冷器可以利用电能直接实现热能传递,借助PID (比例-积分-微分)温度控制器,热电制冷器能够实现精准控温,有效满足电池热管理需求。现有研究多聚焦于热电制冷与其他热管理技术耦合系统的结构优化,而针对各类影响因素的定量分析相对匮乏。本研究搭建了热电装置-电池组实验平台,利用Fluent软件建立了基于热电制冷的电池热管理仿真模型,并通过实验验证了模型的准确性。在此基础上,系统探究了电池初始温度、冷板表面温度及放电倍率对电池组热特性的影响。结果表明,在模拟参数范围内,电池初始温度升高会加大放电过程中的最高温度和最大温差,但对放电结束时的最高温度和最大温差影响较小,二者分别稳定在28.5~28.6和3.0℃。因此,在高温工况时,可预先给电池降温以满足热管理需求。降低冷板表面温度虽能减小电池放电过程中的最高温度,但会导致最大温差增大,当冷板表面温度为5℃时,电池放电过程最高温度降至17.5℃,而最大温差为5.4℃,故冷板表面温度不宜过低。电池放电倍率越高,电池的最高温度和最大温差也越大。敏感度分析表明,电池放电结束的最高温度对冷板表面温度的平均敏感度为0.527,表明通过调节冷板温度可提高热电制冷电池热管理系统的性能。

关键词: 热电制冷, 电池热管理, 电池热特性, CFD仿真, 敏感性分析

Abstract: Thermoelectric cooler (TEC) can utilize electric energy to realize heat energy transfer directly. With the PID (proportional-integral-derivative)temperature controller, the cold end of the thermoelectric cooler can achieve precise temperature control and meet the needs of battery thermal management. Previous studies primarily emphasize structural optimizations in hybrid battery thermal systems. Few of them have reported the quantitative influence of various factors. This work established a thermoelectric device-battery pack experimental platform. Fluent software was used to establish a battery thermal management model based on thermoelectric cooling, and the accuracy of the model was experimentally verified. A simulation study was carried out to systematically investigate the effects of initial temperatures, cold plate surface temperature, and discharge rate on the thermal characteristics of the battery pack. Within the simulated operating range, increasing the initial temperature of the battery increased the maximum temperature (Tmax) and maximum temperature difference (ΔTmax) during the discharge process. However, the initial temperature of the battery had little effect on the Tmax and ΔTmax at the end of discharge, which were 28.5~28.6 and 3.0℃, respectively. Therefore, the battery could be cooled down first when working in a high-temperature environment. Lowering the surface temperature of the cold plate will reduce the Tmax and increase the ΔTmax during battery discharge. When the surface temperature of the cold plate was 5℃, the Tmax during battery discharge was 17.5℃ and the ΔTmax was 5.4℃. Therefore, the surface temperature of the cold plate should not be too low. Both battery non-uniformity and maximum surface temperature increased with the discharge rate. Sensitivity analysis showed that the highest temperature at the end of battery discharge was sensitive to the cold plate temperature, with an average sensitivity of 0.527. Adjusting cold plate surface temperatures effectively enhanced heat efficiency dissipation in thermoelectric cooling battery management system.

Key words: thermoelectric cooling, battery thermal management, battery thermal performance, CFD simulation, sensitivity analysis