[1]Krienitz L, Huss VA, Bock C.Chlorella: 125 years of the green survivalist[J][J].Trends Plant Sci, 2015, 20(2): 67-69
[2]Morales‐Sánchez D, Martinez‐Rodriguez OA, Martinez A.Heterotrophic cultivation of microalgae: production of metabolites of commercial interest[J][J].Journal of Chemical Technology & Biotechnology, 2017, 92(5):925-936
[3]李雄, 王伟良, 黄建科.微藻规模化培养技术研究进展及产业化概况[J][J].生物产业技术, 2016, (3):7-13
[4]LI X, Wang W L, Huang J K.Research progress of the microalgae scale-cultivation and the industrialization[J]. Biotechnology & Business. 2016, (3): 7-13.
[5]Ogbonna JC, Moheimani NR.Potentials of Exploiting Heterotrophic Metabolism for Biodiesel Oil Production by Microalgae[M]. Biomass and Biofuels from Microalgae, 2015, 2: 45-61.
[6]Wang J, Yang H, Wang F.Mixotrophic cultivation of microalgae for biodiesel production: status and prospects[J]. Appl Biochem Biotechnol. 2014, 172(7): 3307-3329.
[7]Ogbonna JC, McHenry MP.Culture Systems Incorporating Heterotrophic Metabolism for Biodiesel Oil Production by Microalgae [M].Biomass and Biofuels from Microalgae 2015, 2: 63-74.
[8]Palabhanvi B, Muthuraj M, Mukherjee M, et al.Process engineering strategy for high cell density-lipid rich cultivation of Chlorella sp. FC2 IITG via model guided feeding recipe and substrate driven pH control[J]. Algal Research. 2016, 16: 317-329.
[9]Zheng Y, Li T, Yu X, et al.High-density fed-batch culture of a thermotolerant microalga Chlorella sorokiniana for biofuel production[J]. Applied Energy. 2013, 108: 281-287.
[10]Singhasuwan S, Choorit W, Sirisansaneeyakul S, et al.Carbon-to-nitrogen ratio affects the biomass composition and the fatty acid profile of heterotrophically grown Chlorella sp. TISTR 8990 for biodiesel production[J]. J Biotechnol. 2015, 216: 169-177.
[11]何勇锦, 柯汉伟, 陈兰孙, 等.粘红酵母RG发酵产油脂动力学模型的构建[J]. 福建师范大学学报:自然科学版. 2014, 30(3): 93-99
[12]He Y J, Ke H W, Chen L S, et al.Studies on the Fermentation Kinetics Models for the Lipid Production by Rhodotorula glutinis RG[J]. Journal of Fujian Normal University. 2014, 30(3): 93-99
[13]Sachdeva N, Kumar GD, Gupta RP, et al.Kinetic modeling of growth and lipid body induction in Chlorella pyrenoidosa under heterotrophic conditions[J]. Bioresour Technol. 2016, 218: 934-943.
[14]Wu ZY, Shi CL, Shi XM.Modeling of lutein production by heterotrophic Chlorella in batch and fed-batch cultures[J]. World Journal of Microbiology and Biotechnology. 2007, 23(9): 1233-1238.
[15]周德庆.微生物学教程-第2版[M]. 高等教育出版社, 2002.
[16]Zhou D Q.A tutorial in microbiology. Second edition[M]. Higher Education Press, 2002.
[17]徐一兰, 官春云, 谭太龙, 等.油菜种子形成中含油量与其合成相关酶活性的变化及其相关性[J]. 作物学报. 2008, 34(10): 1854-1857.
[18]Xu Y L, Guan C Y, Tan T L, et al.Changes of Oil Content and Oil Biosynthesis-Related Enzymes Activities and Their Correlation during Seed Formation in Brassica napus[J]. Acta Agronomica Sinica |. 2008, 34(10):1854-1857.
[19]王滕旭, 李正国, 杨迎伍, 等.甜橙柠檬酸合酶基因的克隆及其表达分析[J]. 中国农学通报. 2010, 26(10):65-69.
[20]Wang T X, Li Z G, Yang Y W, et al.Cloning and Expression Analysis of Citrate Synthase Gene in Orange[J]. Chinese Agricultural Science Bulletin. 2010, 26(10): 65-69.
[21]Ning H, Zhang Y, Ling H, et al.Cloning and Expression Analysis of a Diaminopimelate Epimerase Gene in Sugarcane[J]. Chinese Journal of Tropical Crops. 2013, 34(11): 2200-2208.
[22]李兴武, 李元广, 沈国敏, 等.普通小球藻异养-光自养串联培养的培养基[J]. 过程工程学报. 2006, 6(2): 277-280.
[23]Li X W, Li Y G, Shen G M, et al.Medium for Culturing Chlorella vulgaris with Sequential Heterotrophic?Autotrophic Model[J]. The Chinese Journal of Process Engineering. 2006, 6(2): 277-280.
[24]任婷月, 周万里, 张利群, 等.一种检测葡萄糖氧化酶活力的新方法[J]. 食品与发酵工业. 2015, 41(1): 212-215.
[25]Ren T Y, Zhou W L, Zhang L Q, et al.The new technology for detecting glucose oxidase activity[J]. Food and Fermentation Industries2015, 41(1): 212-215.
[26]GB 5009.5-2010, 《食品中蛋白质的测定》.
[27]GB 5009.5-2010, National food safety standard Determination of protein in foods.
[28]Liang S, Zhu M, Meng H, et al.Heterotrophic mass cultures of Chlorella vulgaris with glucose feeding in fermenters[J]. Journal of South China University of Technology. 2000. 28(12): 66-70
[29]Fan J, Cui Y, Wan M, et al.Lipid accumulation and biosynthesis genes response of the oleaginous Chlorella pyrenoidosa under three nutrition stressors[J]. Biotechnol Biofuels. 2014, 7(1): 17.
[30]Keating KA, Cherry S.Use and Interpretation of Logistic Regression in Habitat-Selection Studies[J]. Journal of Wildlife Management. 2004, 68(4): 774-789.
[31]Luedeking R, Piret EL.A Kinetic Study of the Lactic Acid Fermentation[J]. Journal of Biochemical & Microbiological Technology & Engineering. 2000, 1(4): 393-412.
[32]Xie T, Xia Y, Zeng Y, et al.Nitrate concentration-shift cultivation to enhance protein content of heterotrophic microalga Chlorella vulgaris: Over-compensation strategy[J]. Bioresour Technol. 2017. 233: 247-255
[33]Chia MA, Lombardi AT, Da GGMM, et al.Combined nitrogen limitation and cadmium stress stimulate total carbohydrates, lipids, protein and amino acid accumulation in Chlorella vulgaris (Trebouxiophyceae)[J]. Aquatic Toxicology. 2015, 160: 87.
[34]丁小云, 诸葛斌, 方慧英, 等.产甘油假丝酵母补料发酵中的甘油合成衰减[J]. 应用与环境生物学报.2012, 18(5): 791-796.
[35]Ding X Y, Zhuge B, Fnag H Y, et al.Glycerol Synthesis Attenuation of Candida glycerinogenes in Fed-batch Fermentation [J].Chinese Journal of Applied and Environmental Biology .2012, 18(5): 791-796.
[36]孙启星, 陈旭升, 任喜东, 等.基于pH调节和有机氮源流加调控补料分批发酵过程提高ε-聚赖氨酸产量[J][J].生物工程学报, 2015, 31(5):752-756
[37].
[38]Ren X, Chen J, Deschênes JS, et al.Glucose feeding recalibrates carbon flux distribution and favours lipid accumulation in Chlorella protothecoides through cell energetic management[J].[J].Algal Research, 2016, 14:83-91
|