1. Yu, S.; Jiang, N.; Zou, W.; Li, L.; Tang, C.; Dong, L. A general and inherent strategy to improve the water tolerance of low temperature NH3-SCR catalysts via trace SiO2 deposition. Catalysis Communications 2016, 84, 75-79.
2. Qiu, Y.; Liu, B.; Du, J.; Tang, Q.; Liu, Z.; Liu, R.; Tao, C. The monolithic cordierite supported V2O5 –MoO3/TiO2 catalyst for NH3-SCR. Chemical Engineering Journal 2016, 294, 264-272.
3. Li, J.; Chang, H.; Ma, L.; Hao, J.; Yang, R.T. Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts—a review. Catalysis Today 2011, 175, 147-156.
4. Fang, N.; Guo, J.; Shu, S.; Luo, H.; Chu, Y.; Li, J. Enhancement of low-temperature activity and sulfur resistance of Fe0.3Mn0.5Zr0.2 catalyst for no removal by NH3-SCR. Chemical Engineering Journal 2017, 325, 114-123.
5. Xia, Q,; Qin, Z. Investigation of selective catalytic reduction of NOx with V2O5/TiO2 as catalysts. Journal of Safety and Environmental 2004, 4, 16-18.
6. Tian, W.; Yang, H.; Fan, X.; Zhang, X. Catalytic reduction of NOx with NH3 over different-shaped MnO2 at low temperature. Journal of hazardous materials 2011, 188, 105-109.
7. Tang, X.; Hao, J.; Xu, W.; Li, J. Low temperature selective catalytic reduction of NOx with NH3 over amorphous mnox catalysts prepared by three methods. Catalysis Communications 2007, 8, 329-334.
8. Zhang, Y.; Zhao, X.; Xu, H.; Shen, K.; Zhou, C.; Jin, B.; Sun, K. Novel ultrasonic-modified MnOx/TiO2 for low-temperature selective catalytic reduction (SCR) of no with ammonia. Journal of colloid and interface science 2011, 361, 212-218.
9. Wu, Z.; Jin, R.; Liu, Y.; Wang, H. Ceria modified MnOx/TiO2 as a superior catalyst for NO reduction with NH3 at low-temperature. Catalysis Communications 2008, 9, 2217-2220.
10. Thirupathi, B.; Smirniotis, P.G. Effect of nickel as dopant in Mn/TiO2 catalysts for the low-temperature selective reduction of NO with NH3. Catalysis Letters 2011, 141, 1399-1404.
11. Thirupathi, B.; Smirniotis, P.G. Nickel-doped Mn/TiO2 as an efficient catalyst for the low-temperature SCR of NO with NH3: Catalytic evaluation and characterizations. Journal of Catalysis 2012, 288, 74-83.
12. Shen, B.; Liu, T.; Zhao, N.; Yang, X.; Deng, L. Iron-doped Mn-Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO with NH3. Journal of Environmental Sciences 2010, 22, 1447-1454.
13. Luo, S.; Zhou, W.; Xie, A.; Wu, F.; Yao, C.; Li, X.; Zuo, S.; Liu, T. Effect of MnO2 polymorphs structure on the selective catalytic reduction of NOx with NH3 over TiO2–palygorskite. Chemical Engineering Journal 2016, 286, 291-299.
14. Huang, J.; Tong, Z.; Huang, Y.; Zhang, J. Selective catalytic reduction of NO with NH3 at low temperatures over iron and manganese oxides supported on mesoporous silica. Applied Catalysis B: Environmental 2008, 78, 309-314.
15. Jing, G.U.O.; Caiting, L.I.; Pei, L.U.; Huafei, C.U.I.; Dunliang, P.; Qingbo, W.E.N. Research on SCR denitrification of MnOx/Al2O3 modified by CeO2 and its mechanism at low temperature. Chinese Journal of Environmental Science 2011, 32, 2240-2246.
16. Li, Y.; Li, Y.; Wang, P.; Hu, W.; Zhang, S.; Shi, Q.; Zhan, S. Low-temperature selective catalytic reduction of NOx with NH3 over MnFeOx nanorods. Chemical Engineering Journal 2017, 330, 213-222.
17. Lian, Z.; Liu, F.; He, H.; Shi, X.; Mo, J.; Wu, Z. Manganese–niobium mixed oxide catalyst for the selective catalytic reduction of NOx with NH3 at low temperatures. Chemical Engineering Journal 2014, 250, 390-398.
18. Zuo, J.; Chen, Z.; Wang, F.; Yu, Y.; Wang, L.; Li, X. Low-temperature selective catalytic reduction of NOx with NH3 over novel Mn–Zr mixed oxide catalysts. Industrial & Engineering Chemistry Research 2014, 53, 2647-2655.
19. Liu, Z.; Liu, Y.; Li, Y.; Su, H.; Ma, L. WO3 promoted Mn–Zr mixed oxide catalyst for the selective catalytic reduction of NOx with NH3. Chemical Engineering Journal 2016, 283, 1044-1050.
20. Wan, Y.; Zhao, W.; Tang, Y.; Li, L.; Wang, H.; Cui, Y.; Gu, J.; Li, Y.; Shi, J. Ni-Mn bi-metal oxide catalysts for the low temperature SCR removal of NO with NH3. Applied Catalysis B: Environmental 2014, 148-149, 114-122.
21. Cha, W.; Chin, S.; Park, E.; Yun, S.-T.; Jurng, J. Effect of V2O5 loading of V2O5/TiO2 catalysts prepared via CVC and impregnation methods on NOx removal. Applied Catalysis B: Environmental 2013, 140-141, 708-715.
22. Boningari, T.; Koirala, R.; Smirniotis, P.G. Low-temperature catalytic reduction of NO by NH3 over vanadia-based nanoparticles prepared by flame-assisted spray pyrolysis: Influence of various supports. Applied Catalysis B: Environmental 2013, 140-141, 289-298.
23. Boningari, T.; Koirala, R.; Smirniotis, P.G. Low-temperature selective catalytic reduction of NO with NH3 over V/ZrO2 prepared by flame-assisted spray pyrolysis: Structural and catalytic properties. Applied Catalysis B: Environmental 2012, 127, 255-264.
24. Jiang, Y.; Gao, X.; Zhang, Y.; Wu, W.; Song, H.; Luo, Z.; Cen, K. Effects of PbCl2 on selective catalytic reduction of NO with NH3 over vanadia-based catalysts. Journal of hazardous materials 2014, 274, 270-278.
25. Li, Q.; Yang, H.; Ma, Z.; Zhang, X. Selective catalytic reduction of NO with NH3 over CuOx-carbonaceous materials. Catalysis Communications 2012, 17, 8-12.
26. Li, Q.; Yang, H.; Qiu, F.; Zhang, X. Promotional effects of carbon nanotubes on V2O5/TiO2 for NOx removal. Journal of hazardous materials 2011, 192, 915-921.
27. Fan, X.; Qiu, F.; Yang, H.; Tian, W.; Hou, T.; Zhang, X. Selective catalytic reduction of NOx with ammonia over Mn–Ce–Ox/TiO2-carbon nanotube composites. Catalysis Communications 2011, 12, 1298-1301.
28. Zhang L, Zhang D, Zhang J. Design of meso-TiO2@MnOx-CeOx/CNTs with a core–shell structure as DeNOx catalysts: promotion of activity, stability and SO2-tolerance. Nanoscale, 2013, 20, 9821-9829.
29. Zhang, Y.; Zheng, Y.; Wang, X.; Lu, X. Preparation of Mn–FeOx/CNTs catalysts by redox co-precipitation and application in low-temperature no reduction with NH3. Catalysis Communications 2015, 62, 57-61.
30. Huang, B.; Huang, R.; Jin, D.; Ye, D. Low temperature SCR of NO with NH3 over carbon nanotubes supported vanadium oxides. Catalysis Today 2007, 126, 279-283.
31. Huang, Z.; Liu, Z.; Zhang, X.; Liu, Q. Inhibition effect of H2O on V2O5/AC catalyst for catalytic reduction of NO with NH3 at low temperature. Applied Catalysis B: Environmental 2006, 63, 260-265.
32. Wu, Z.; Jin, R.; Wang, H.; Liu, Y. Effect of ceria doping on SO2 resistance of Mn/TiO2 for selective catalytic reduction of NO with NH3 at low temperature. Catalysis Communications 2009, 10, 935-939.
33. Sun, D.; Liu, Q.; Liu, Z.; Gui, G.; Huang, Z. An in situ drifts study on SCR of NO with NH3 over V2O5/AC surface. Catalysis Letters 2009, 132, 122-126.
34. Jiang, B.; Deng, B.; Zhang, Z.; Wu, Z.; Tang, X.; Yao, S.; Lu, H. Effect of Zr addition on the low-temperature SCR activity and SO2 tolerance of Fe–Mn/Ti catalysts. The Journal of Physical Chemistry C 2014, 118, 14866-14875.
35. Zhu, Z.P.; Liu, Z.Y.; Niu, H.X.; Liu, S.J. Promoting effect of SO2 on activated carbon-supported vanadia catalyst for NO reduction by NH3 at low temperatures. Journal of Catalysis 1999, 187, 245-248.
36. Gálvez, M.E.; Boyano, A.; Lázaro, M.J.; Moliner, R. A study of the mechanisms of no reduction over vanadium loaded activated carbon catalysts. Chemical Engineering Journal 2008, 144, 10-20.
37. Ettireddy, P.R.; Ettireddy, N.; Boningari, T.; Pardemann, R.; Smirniotis, P.G. Investigation of the selective catalytic reduction of nitric oxide with ammonia over Mn/TiO2 catalysts through transient isotopic labeling and in situ FT-IR studies. Journal of Catalysis 2012, 292, 53-63.
38. Yang, S.; Wang, C.; Li, J.; Yan, N.; Ma, L.; Chang, H. Low temperature selective catalytic reduction of NO with NH3 over Mn–Fe spinel: Performance, mechanism and kinetic study. Applied Catalysis B: Environmental 2011, 110, 71-80.
39. Grossale, A.; Nova, I.; Tronconi, E.; Chatterjee, D.; Weibel, M. The chemistry of the NO/NO2–NH3 “fast” SCR reaction over Fe-ZSM5 investigated by transient reaction analysis. Journal of Catalysis 2008, 256, 312-322.
40. Wang, Y.; Ge, C.; Zhan, L.; Li, C.; Qiao, W.; Ling, L. MnOx–CeO2/activated carbon honeycomb catalyst for selective catalytic reduction of NO with NH3 at low temperatures. Industrial & Engineering Chemistry Research 2012, 51, 11667-11673.
41. Tronconi, E.; Nova, I.; Ciardelli, C.; Chatterjee, D.; Weibel, M. Redox features in the catalytic mechanism of the “standard” and “fast” NH3-SCR of NOx over a V-based catalyst investigated by dynamic methods. Journal of Catalysis 2007, 245, 1-10.
42. Wang, J.; Yan, Z.; Liu, L.; Chen, Y.; Zhang, Z.; Wang, X. In situ drifts investigation on the SCR of NO with NH3 over V2O5 catalyst supported by activated semi-coke. Applied Surface Science 2014, 313, 660-669.
|