欢迎访问过程工程学报, 今天是

过程工程学报 ›› 2024, Vol. 24 ›› Issue (11): 1263-1273.DOI: 10.12034/j.issn.1009-606X.224044CSTR: 32067.14.jproeng.224044

• 研究论文 • 上一篇    下一篇

平板式陶瓷膜过滤特性数值模拟

卢铮1, 安燕1, 邓洋1, 程燃1, 刘海2, 田蒙奎1*   

  1. 1. 贵州大学化学与化工学院,贵州 贵阳 550025 2. 中低品位磷矿及其共伴生资源高效利用国家重点实验室,贵州 贵阳 550016
  • 收稿日期:2024-01-30 修回日期:2024-05-08 出版日期:2024-11-28 发布日期:2024-11-27
  • 通讯作者: 田蒙奎 tianmk78@126.com
  • 基金资助:
    贵州省科技支撑计划项目;瓮福(集团)有限责任公司技术开发项目;贵州省双碳与新能源技术创新发展研究院资助项目

Numerical simulation of filtration characteristics of flat ceramic membrane

Zheng LU1,  Yan AN1,  Yang DENG1,  Ran CHENG1,  Hai LIU2,  Mengkui TIAN1*   

  1. 1. School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou 550025, China 2. State Key Laboratory of Efficient Utilization for Medium and Low Grade Phosphate Rock and Its Associated Resources, Guiyang, Guizhou 550016, China
  • Received:2024-01-30 Revised:2024-05-08 Online:2024-11-28 Published:2024-11-27

摘要: 平板式陶瓷膜因其耐腐蚀、耐磨蚀、处理能力大等优点,广泛用于铁矿、铜矿、磷矿等金属、非金属料浆过滤分离过程。为深入探究平板式陶瓷膜在磷精矿分离过程内部流场特性,进一步优化工艺参数、膜结构和膜污染防治,建立了平板式陶瓷膜仿真模型,通过实验和计算流体力学分析,先验证多孔介质模型在模拟中的可靠性,然后研究了陶瓷膜过滤纯水时内部压力、流量的变化以及空气进入、工作压力、矿浆浓度对过滤的影响。模拟结果表明,空气进入对工作压力为-0.08 MPa时的真空度影响最大;瞬态仿真揭示了陶瓷膜在过滤时从开始抽气到流量稳定全过程的变化规律,发现开始过滤的前3 s为其高效过滤区间,之后流量下降并稳定,稳定流量大小取决于出口工作压力;-0.06和-0.08 MPa的工作压力在5 s内累积过滤流量差异极小。研究结果可为不同工艺需求选择高效过滤的时间和适用压力,及提高生产效率和降低能源消耗提供理论指导。

关键词: 陶瓷膜, 计算流体力学, 多孔介质, 压降, 流量

Abstract: Flat ceramic membranes, prized for their corrosion resistance, abrasion resistance, and substantial processing capacity, find extensive applications in the filtration and separation processes of metal and non-metal pulp, such as iron ore, copper ore, and phosphate ore. In pursuit of a comprehensive understanding of the intricate internal flow dynamics inherent to flat ceramic membranes during the phosphorus concentrate separation process, this study aims to meticulously scrutinize the intricate nuances of flow field characteristics. In order to refine and optimize various parameters encompassing process intricacies, membrane architecture intricacies, and strategies for mitigating membrane fouling phenomena, a structural model for flat ceramic membranes is set up. Experimental and computational fluid dynamics (CFD) analyses are employed to validate the reliability of the porous media model in simulation. Subsequently, gas-liquid multiphase flow model and realistic gas model are integrated to investigate the dynamic variations in internal pressure and flow rate during the filtration of water through ceramic membranes. Additionally, the impact of air ingress, operating pressure and slurry concentration on the filtration process are analysed. Simulation results indicate that the entry of air has the most significant influence on vacuum degree when the operating pressure is set at -0.08 MPa. Transient simulations unveil the entire process dynamics of ceramic membrane filtration, from initial air evacuation to stabilized flow, revealing the first 3 seconds as the high-efficiency filtration interval. Subsequently, the flow rate decreases and stabilizes, with the stabilized flow rate contingent upon the outlet operating pressure. The difference in cumulative filtration flow rates between operating pressures of -0.06 and -0.08 MPa within 5 seconds is minimal. The research outcomes provide valuable theoretical guidance for determining the most suitable filtration durations and pressure settings tailored to diverse process specifications, as well as contributing to the enhancement of production efficiency and the reduction of energy consumption.

Key words: ceramic membrane, computational fluid dynamics, porous media, pressure drop, flow rate