[1] Feng H, Li Q H, Meng A H, et al. A damk?hler number for evaluating combustion efficiency of horizontal circulating fluidized. CFB-11: Proceedings of the 11th International Conference on Fluidized Bed Technology, Pulished 2014, Volume, Issue, Pages 613-618.
[2] Kasbaoui M H, Koch D L, Subramanian G, et al. Preferential concentration driven instability of sheared gas–solid suspensions[J]. Journal of Fluid Mechanics, 2015, 770: 85-123.
[3] Fullmer W D, Hrenya C M. The clustering instability in rapid granular and gas-solid flows[J]. Annual Review of Fluid Mechanics, 2017, 49: 485-510.
[4] Couto N, Silva V B, Bispo C, et al. From laboratorial to pilot fluidized bed reactors: analysis of the scale-up phenomenon[J]. Energy Conversion and Management, 2016, 119: 177-186.
[5] Fox R O. Large-eddy-simulation tools for multiphase flows[J]. Annual Review of Fluid Mechanics, 2012, 44: 47-76.
[6] 祁海鹰, 戴群特, 陈程. 大型流态化多相流数值模拟的关键科学问题——曳力模型的理论分析[J]. 力学与实践,2014,36(03):269-277.
Qi H Y, Dai Q T, Chen C. The key scientific problems in the Eulerian modeling of large scale multi-phase flows——drag model. Mechanics in Engineering,2014,36(03):269-277.
[7] O’Brien T J, Syamlal M. Particle cluster effects in the numerical simulation of a circulating fluidized bed[J]. Circulating fluidized bed technology IV, 1993: 367-372.
[8] Li J H, Ge W, Wang W, et al. Focusing on mesoscales: from the energy-minimization multiscale model to mesoscience[J]. Current Opinion in Chemical Engineering, 2016, 13: 10-23.
[9] Zhou L X. Dynamics of multiphase turbulent reacting fluid flows [M]. National Defence Industry Press, Beijing, 2002.
[10] Agrawal K, Loezos P N, Syamlal M, et al. The role of meso-scale structures in rapid gas–solid flows[J]. Journal of Fluid Mechanics, 2001, 445: 151-185.
[11] 王淑彦, 房建宇, 邵宝力等. 基于不同亚格子尺度过滤模型下提升管内颗粒流动的数值模拟[J]. 高校化学工程学报,2016,30(02):325-331.
WANG S Y, Fang J Y, Shao B, et al. Numerical Simulation of Flow Behavior of Particles Based on Two-Fluid Model with Different Filtered Drag Models in Riser[J] Journal of Chemical Engineering of Chinese Universities, ,2016,30(02):325-331.
[12] Cheng Y, Guo Y C, Wei F, et al. Modeling the hydrodynamics of downer reactors based on kinetic theory[J]. Chemical Engineering Science, 1999, 54(13): 2019-2027.
[13] 于勇, 蔡飞鹏, 周力行, 等. 下降管中稠密两相湍流的数值模拟[J]. 工程热物理学报, 2005, 26(z1): 117-120.
Yu Y, Cai P F, Zhou L X, et al. Simulation of dense gas-particle flows in downer[J]. Journal of engineering thermophysics, 2005, 26(zl): 117-120.
[14] Zeng Z X, Zhou L X. A two-scale second-order moment particle turbulence model and simulation of dense gas–particle flows in a riser[J]. Powder technology, 2006, 162(1): 27-32.
[15] Jesse C, Desjardins O, Fox R O. Strongly coupled fluid-particle flows in vertical channels. II. Turbulence modeling[J]. Physics of Fluids, 2016, 28(3): 033306.
[16] Fox R O. On multiphase turbulence models for collisional fluid–particle flows[J]. Journal of Fluid Mechanics, 2014, 742:368–424.
[17] 王维,洪坤,鲁波娜,张楠,李静海. 流态化模拟:基于介尺度结构的多尺度CFD[J]. 化工学报,2013,64(01):95-106.
Wang W, Hong K, Lu B N, Zhang N, Li J H. Fluidized bed simulation: structure-dependent multiscale CFD[J]. Journal of Chemical Industry and Engineering(China),2013,64(01):95-106.
[18] 杨宁,李静海. 化学工程中的介尺度科学与虚拟过程工程:分析与展望[J]. 化工学报,2014,65(07):2403-2409.
Yang N, Li J H. Mesoscience in chemical engineering and virtual process engineering[J]:analysis and perspective. Journal of Chemical Industry and Engineering(China),20
[19] Zhou L X. Advances in Studies on Turbulent Dispersed Multiphase Flows[J]. Chinese Journal of Chemical Engineering, 2010, 18(6): 889-898.
[20] Tenneti S, Subramaniam S. Particle-resolved direct numerical simulation for gas-solid flow model development[J]. Annual review of fluid mechanics, 2014, 46: 199-230.
[21] Igci Y, Sundaresan S. Constitutive models for filtered two-fluid models of fluidized gas–particle flows[J]. Industrial & Engineering Chemistry Research, 2011, 50(23): 13190-13201.
[22] Ozel A, Fede P, Simonin O. Development of filtered Euler–Euler two-phase model for circulating fluidised bed: high resolution simulation, formulation and a priori analyses[J]. International Journal of Multiphase Flow, 2013, 55: 43-63.
[23] Van M A, Sint A M, Deen N G, et al. Numerical simulation of dense gas-solid fluidized beds: a multiscale modeling strategy[J]. Annu. Rev. Fluid Mech., 2008, 40: 47-70.
[24] Gidaspow D. Multiphase flow and fluidization: continuum and kinetic theory descriptions[M]. Academic press, 1994.
[25] Desjardins O, Fox R O, Villedieu P. A quadrature-based moment method for dilute fluid-particle flows[J]. Journal of Computational Physics, 2008, 227(4): 2514-2539.
[26] Jenkins J T, Savage S B. A theory for the rapid flow of identical, smooth, nearly elastic, spherical particles[J]. Journal of Fluid Mechanics, 1983, 130: 187-202.
[27] Gidaspow D. Multiphase flow and fluidization: continuum and kinetic theory descriptions[M]. Academic press, 1994.
[28] Rubinstein G J, Derksen J J, Sundaresan S. Lattice Boltzmann simulations of low-Reynolds-number flow past fluidized spheres: effect of Stokes number on drag force[J]. Journal of Fluid Mechanics, 2016, 788: 576-601.
[29] Cody G D, Johri J, Goldfarb D. Dependence of particle fluctuation velocity on gas flow, and particle diameter in gas fluidized beds for monodispersed spheres in the Geldart B and A fluidization regimes[J]. Powder Technology, 2008, 182(2): 146-170.
[30] Wang W, Chen Y P. Mesoscale modeling: beyond local equilibrium assumption for multiphase flow[M]//Advances in Chemical Engineering. Academic Press, 2015, 47: 193-277.
[31] Wang J W. Effect of granular temperature and solid concentration fluctuation on the gas-solid drag force: A CFD test[J]. Chemical Engineering Science, 2017, 168: 11-14.
[32] Gopalan B, Shaffer F. Higher order statistical analysis of Eulerian particle velocity data in CFB risers as measured with high speed particle imaging[J]. Powder technology, 2013, 242: 13-26.
[33] 孙丹, 陈巨辉, 刘国栋, 等. 稠密气固两相流各向异性颗粒相矩方法[J]. 力学学报, 2010, 42(6): 1034-1041.
Sun D, Chen J H, Liu G D, et al. Anisotropic second –order moment method of particles for dense gas-solid flow[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(6): 1034-1041.
[34] 蔡振宁. 气体动理学中数值矩方法的算法研究与应用[D]. 北京大学, 2013.
Cai Zhenning. Investigations and Applications of the Numerical Moment Method in the Kinetic Theory of Gases[D]. Peking University, 2013.
[35] Capecelatro J, Desjardins O, Fox R O. On fluid–particle dynamics in fully developed cluster-induced turbulence[J]. Journal of Fluid Mechanics, 2015, 780: 578-635.
[36] Zhao Bidan, Li Shuyue, Wang Junwu. Generalized Boltzmann kinetic theory for EMMS-based two-fluid model[J]. Chemical Engineering Science, 2016, 156: 44-55.
[37] Marchisio D L, Fox R O. Computational models for polydisperse particulate and multiphase systems[M]. Cambridge University Press, 2013.
[38] Vié A, Doisneau F, Massot M. On the Anisotropic Gaussian velocity closure for inertial-particle laden flows[J]. Communications in Computational Physics, 2015, 17(01): 1-46.
[39] Bhatnagar P L, Gross E P, Krook M. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems[J]. Physical review, 1954, 94(3): 511.
[40] Garzó V, Tenneti S, Subramaniam S, et al. Enskog kinetic theory for monodisperse gas–solid flows[J]. Journal of Fluid Mechanics, 2012, 712: 129-168.
[41] Capecelatro J, Desjardins O, Fox R O. Numerical study of collisional particle dynamics in cluster-induced turbulence[J]. Journal of Fluid Mechanics, 2014, 747: R2.
[42] Kong B, Fox R O, Feng H, et al. Euler–euler anisotropic gaussian mesoscale simulation of homogeneous cluster‐induced gas–particle turbulence[J]. AIChE Journal, 2017, 63(7): 2630-2643.
[43] Abbott M B, Minns A W. Computational hydraulics[M]. Routledge, 2017. |