The Chinese Journal of Process Engineering ›› 2021, Vol. 21 ›› Issue (7): 774-785.DOI: 10.12034/j.issn.1009-606X.220229
• Flow & Transfer • Previous Articles Next Articles
Qiuying WU1,2(), Lingkai KONG2,3, Ji XU2,4(
), Wei GE2,3,4, Shaojun YUAN1(
)
Received:
2020-07-20
Revised:
2020-08-07
Online:
2021-07-28
Published:
2021-07-27
吴秋莹1,2(), 孔令凯2,3, 徐骥2,4(
), 葛蔚2,3,4, 袁绍军1(
)
作者简介:
吴秋莹(1995-),女,四川省资阳市人,硕士研究生,化学工程,E-mail: qywu@ipe.ac.cn;通讯联系人基金资助:
CLC Number:
Qiuying WU, Lingkai KONG, Ji XU, Wei GE, Shaojun YUAN. Numerical simulation of hollow catalyst with pores in gas-solid reaction system[J]. The Chinese Journal of Process Engineering, 2021, 21(7): 774-785.
吴秋莹, 孔令凯, 徐骥, 葛蔚, 袁绍军. 气固两相流内中空多孔催化剂性能的数值模拟[J]. 过程工程学报, 2021, 21(7): 774-785.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jproeng.com/EN/10.12034/j.issn.1009-606X.220229
Parameter | Value |
---|---|
Particle diameter/m | 5.0×10-3 |
Grid size/m | 5.0×10-4~2.0×10-3 |
Time step/s | 2.0×10-5~5.0×10-5 |
Inlet mass fraction of A | 1.0 |
Inlet mass fraction of B | 0.0 |
Inlet mass fraction of I | 0.0 |
Table 1 Parameters of numerical simulation
Parameter | Value |
---|---|
Particle diameter/m | 5.0×10-3 |
Grid size/m | 5.0×10-4~2.0×10-3 |
Time step/s | 2.0×10-5~5.0×10-5 |
Inlet mass fraction of A | 1.0 |
Inlet mass fraction of B | 0.0 |
Inlet mass fraction of I | 0.0 |
Res | Frössling | Ranz-Marshall | Lu et al[ | Simulation |
---|---|---|---|---|
10 | 3.75 | 3.90 | 3.68 | 3.80 |
20 | 4.47 | 4.68 | 4.51 | 4.79 |
40 | 5.49 | 5.79 | 5.67 | 6.14 |
60 | 6.28 | 6.65 | 6.56 | 7.16 |
100 | 7.52 | 8.00 | 7.94 | 8.51 |
200 | 9.81 | 10.49 | 10.46 | 11.31 |
Table 2 Particle Sherwood number (Shs) of the single solid spherical catalyst
Res | Frössling | Ranz-Marshall | Lu et al[ | Simulation |
---|---|---|---|---|
10 | 3.75 | 3.90 | 3.68 | 3.80 |
20 | 4.47 | 4.68 | 4.51 | 4.79 |
40 | 5.49 | 5.79 | 5.67 | 6.14 |
60 | 6.28 | 6.65 | 6.56 | 7.16 |
100 | 7.52 | 8.00 | 7.94 | 8.51 |
200 | 9.81 | 10.49 | 10.46 | 11.31 |
Parameter | Value |
---|---|
Particle diameter/m | 1.0×10-4 |
Grid size/m | 1.0×10-5~5.0×10-5 |
Time step/s | 1.0×10-7 |
Inlet mass fraction of A | 0.9 |
Inlet mass fraction of B | 0.0 |
Inlet mass fraction of I | 0.1 |
Table 3 Parameters of numerical simulation in dilute phase
Parameter | Value |
---|---|
Particle diameter/m | 1.0×10-4 |
Grid size/m | 1.0×10-5~5.0×10-5 |
Time step/s | 1.0×10-7 |
Inlet mass fraction of A | 0.9 |
Inlet mass fraction of B | 0.0 |
Inlet mass fraction of I | 0.1 |
Parameter | Value |
---|---|
Particle diameter/m | 1.0×10-4 |
Grid size/m | 1.0×10-5~5.0×10-5 |
Time step/s | 1.0×10-7 |
Inlet mass fraction of A | 0.1 |
Inlet mass fraction of B | 0.0 |
Inlet mass fraction of I | 0.9 |
Table 4 Parameter of numerical simulation in dense phase
Parameter | Value |
---|---|
Particle diameter/m | 1.0×10-4 |
Grid size/m | 1.0×10-5~5.0×10-5 |
Time step/s | 1.0×10-7 |
Inlet mass fraction of A | 0.1 |
Inlet mass fraction of B | 0.0 |
Inlet mass fraction of I | 0.9 |
1 | 郭慕孙, 李洪钟. 流态化手册 [M]. 北京: 化学工业出版社, 2008: 150-159. |
Kwauk M, Li H Z. Handbook of fluidization [M]. Beijing: Chemical Industry Press, 2008: 150-159. | |
2 | 金涌, 祝京旭, 汪展文. 流态化工程原理 [M]. 北京: 清华大学出版社, 2001: 2-14. |
Jin Y, Zhu J X, Wang Z W. Fluidization engineering principles [M]. Beijing: Tsinghua Univeristy Press, 2001: 2-14. | |
3 | 李洪钟, 郭慕孙. 回眸与展望流态化科学与技术 [J]. 化工学报, 2013, 64(1): 52-60. |
Li H Z, Kwauk M. Review and prospect of fluidization science and technology [J]. CIESC Journal, 2013, 64(1): 52-60. | |
4 | Amjadi O, Tahmasebpoor M. Improving fluidization behavior of cohesive Ca(OH)2 adsorbent using hydrophilic silica nanoparticles: parametric investigation [J]. Particuology, 2018, 40: 52-61. |
5 | Kashyap M, Tadiboyina M R, Okolo C, et al. Improving circulating fluidized bed dehydrogenation technology through optimization of fluidization [J]. Particuology, 2020, 50: 127-134. |
6 | Yu Y, Zhang C, Zhang Z, et al. Characterizing the catalyst fluidization with field synergy to improve the amine absorption for CO2 capture [J]. Chinese Journal of Chemical Engineering, 2019, 27(7): 1608-1617. |
7 | Zhou C, Fan X, Duan C, et al. A method to improve fluidization quality in gas-solid fluidized bed for fine coal beneficiation [J]. Particuology, 2019, 43: 181-192. |
8 | 李洪钟, 郭慕孙. 气固流态化的散式化 [M]. 北京: 化学工业出版社, 2002: 38-52. |
Li H Z, Kwauk M. Particulatization of gas-solid fluidization [M]. Beijing: Chemical Industry Press, 2002: 38-52. | |
9 | Liu B, Zhang X, Wang L, et al. Fluidization of non-spherical particles: sphericity, Zingg factor and other fluidization parameters [J]. Particuology, 2008, 6(2): 125-129. |
10 | Hilton J E, Mason L R, Cleary P W. Dynamics of gas-solid fluidised beds with non-spherical particle geometry [J]. Chemical Engineering Science, 2010, 65(5): 1584-1596. |
11 | Nan W, Wang Y, Wang J. Numerical analysis on the fluidization dynamics of rodlike particles [J]. Advanced Powder Technology, 2016, 27(5): 2265-2276. |
12 | Mandø M, Rosendahl L. On the motion of non-spherical particles at high Reynolds number [J]. Powder Technology, 2010, 202(1/2/3): 1-13. |
13 | Li X, Visaveliya N, Hafermann L, et al. Hierarchically structured particles for micro flow catalysis [J]. Chemical Engineering Journal, 2017, 326: 1058-1065. |
14 | Cheng Q, Tian Y, Lyu S, et al. Confined small-sized cobalt catalysts stimulate carbon-chain growth reversely by modifying ASF law of Fischer-Tropsch synthesis [J]. Nature Communications, 2018, 9(1): 1-9. |
15 | Wang X, Li M, Cao C, et al. Surfactant-free palladium nanoparticles encapsulated in ZIF-8 hollow nanospheres for size-selective catalysis in liquid-phase solution [J]. ChemCatChem, 2016, 8(20): 3224-3228. |
16 | Yao D, Wang Y, Katherine H L, et al. Balancing effect between adsorption and diffusion on catalytic performance inside hollow nanostructured catalyst [J]. ACS Catalysis, 2019, 9(4): 2969-2976. |
17 | 邹海魁, 初广文, 向阳, 等. 超重力反应强化技术最新进展 [J]. 化工学报, 2015, 66(8): 2805-2809. |
Zou H K, Chu G W, Xiang Y, et al. New progress of HIGEE reaction technology [J]. Journal of Chemical Industry and Engineering, 2015, 66(8): 2805-2809. | |
18 | Nakamura H, Tokuda T, Iwasaki T, et al. Numerical analysis of particle mixing in a rotating fluidized bed [J]. Chemical Engineering Science, 2007, 62(11): 3043-3056. |
19 | De Broqueville A, De Wilde J. Numerical investigation of gas-solid heat transfer in rotating fluidized beds in a static geometry [J]. Chemical Engineering Science, 2009, 64(6): 1232-1248. |
20 | De Wilde J, De Broqueville A. Experimental investigation of a rotating fluidized bed in a static geometry [J]. Powder Technology, 2008, 183(3): 426-435. |
21 | 威尔特 J R, 威克斯 C E, 威尔逊 R E, 等. 动量、热量和质量传递原理 [M]. 马紫峰, 吴卫生, 译. 第4版. 北京: 化学工业出版社, 2005: 403-463. |
Welty J R, Wicks C E, Wilson R E, et al. Fundamentals of momentum, heat and mass transfer [M]. Ma Z F, Wu W S, trans. 4th Ed. Beijing: Chemical Industry Press, 2005: 403-463. | |
22 | Lu J, Das S, Peters E A J F, et al. Direct numerical simulation of fluid flow and mass transfer in dense fluid-particle systems with surface reactions [J]. Chemical Engineering Science, 2018, 176: 1-18. |
23 | Lu B, Luo H, Li H, et al. Speeding up CFD simulation of fluidized bed reactor for MTO by coupling CRE model [J]. Chemical Engineering Science, 2016, 143: 341-350. |
24 | Carlos Varas A E, Peters E A J F, Kuipers J A M. Computational fluid dynamics-discrete element method (CFD-DEM) study of mass-transfer mechanisms in riser flow [J]. Industrial & Engineering Chemistry, 2017, 56(19): 5558-5572. |
25 | Das S, Deen N G, Kuipers J A M. A DNS study of flow and heat transfer through slender fixed-bed reactors randomly packed with spherical particles [J]. Chemical Engineering Science, 2017, 160: 1-19. |
26 | Deen N G, Kuipers J A M. Direct numerical simulation of fluid flow and mass transfer in dense fluid-particle systems [J]. Industrial & Engineering Chemistry Research, 2013, 52(33): 11266-11274. |
27 | Lu J, Peters E A J F, Kuipers J A M. Direct numerical simulation of fluid flow and mass transfer in particle clusters [J]. Industrial & Engineering Chemistry Research, 2018, 57(13): 4664-4679. |
28 | Lu J, Peters E A J F, Kuipers J A M. Direct numerical simulation of fluid flow and dependently coupled heat and mass transfer in fluid-particle systems [J]. Chemical Engineering Science, 2019, 204: 203-219. |
29 | Lu J, Tan M D, Peters E A J F, et al. Direct numerical simulation of reactive fluid-particle systems using an immersed boundary method [J]. Industrial & Engineering Chemistry Research, 2018, 57(45): 15565-15578. |
30 | Van Der Hoef M A, Van Sint Annaland M, Deen N G, et al. Numerical simulation of dense gas-solid fluidized beds: a multiscale modeling strategy [J]. Annual Review of Fluid Mechanics, 2008, 40(1): 47-70. |
31 | Green D W, Perry R H. Perry's chemical engineers' handbook [M]. 8th Ed. New York: The McGraw-Hill Companies, 2002: 746-755. |
32 | Li J, Agarwal R K, Zhou L, et al. Investigation of a bubbling fluidized bed methanation reactor by using CFD-DEM and approximate image processing method [J]. Chemical Engineering Science, 2019, 207: 1107-1120. |
33 | Christoph K, Christoph G, Alice H, et al. Models, algorithms and validation for opensource DEM and CFD-DEM [J]. Progress in Computational Fluid Dynamics, 2012, 12: 140-152. |
34 | Chu K W, Wang B, Xu D L, et al. CFD-DEM simulation of the gas-solid flow in a cyclone separator [J]. Chemical Engineering Science, 2011, 66(5): 834-847. |
35 | Wu C, Cheng Y, Ding Y, et al. CFD-DEM simulation of gas-solid reacting flows in fluid catalytic cracking (FCC) process [J]. Chemical Engineering Science, 2010, 65(1): 542-549. |
36 | Gidaspow D. Multiphase flow and fluidization: continuum and kinetic theory descriptions [M]. New York: Academic Press, 1994: 421-446. |
37 | Tian T, Wang H, Ge W, et al. Detecting particle clusters in particle-fluid systems by a density based method [J]. Communications in Computational Physics, 2019, 26(5): 1617-1630. |
38 | Lu B, Zhang J, Luo H, et al. Numerical simulation of scale-up effects of methanol-to-olefins fluidized bed reactors [J]. Chemical Engineering Science, 2017, 171: 244-255. |
39 | Tian P, Wei Y, Ye M, et al. Methanol to olefins (MTO): from fundamentals to commercialization [J]. ACS Catalysis, 2015, 5(3): 1922-1938. |
40 | Ying L, Yuan X, Ye M, et al. A seven lumped kinetic model for industrial catalyst in DMTO process [J]. Chemical Engineering Research and Design, 2015, 100: 179-191. |
41 | Zhao Y, Li H, Ye M, et al. 3D numerical simulation of a large scale MTO fluidized bed reactor [J]. Industrial & Engineering Chemistry Research, 2013, 52(33): 11354-11364. |
42 | Das A K, Baudrez E, Marin G B, et al. Three-dimensional simulation of a fluid catalytic cracking riser reactor [J]. Industrial & Engineering Chemistry Research, 2003, 42(12): 2602-2617. |
43 | Trujillo W R, De Wilde J. Computational fluid dynamics simulation of fluid catalytic cracking in a rotating fluidized bed in a static geometry [J]. Industrial & Engineering Chemistry Research, 2010, 49(11): 5288-5298. |
[1] | Baocheng JIANG Tao XIAO Songsong WANG Xueyi GUO Qinmeng WANG. Research on influence of oxygen lance area position on flow characteristics of large copper smelting oxygen bottom blowing furnace [J]. The Chinese Journal of Process Engineering, 2025, 25(2): 150-158. |
[2] | Xu WANG Guohui SU Ting LI Zhennan HAN Liangliang FU Guangwen XU. Reaction and gas-solid flow characteristics of calcium carbide synthesis in a fluidized bed [J]. The Chinese Journal of Process Engineering, 2025, 25(2): 159-168. |
[3] | Jianwen ZHANG Guoqing SU Leilei FENG Yan LI Fan ZHANG Shilin LU Yahui ZHAO Gang SHENG. Study of ammonium salt crystallization behavior in high pressure heat exchanger of hydrogenation unit [J]. The Chinese Journal of Process Engineering, 2025, 25(1): 20-33. |
[4] | Xindi ZHANG Jie ZHAO Jianhua GUO Weiyi ZHANG. Effect of straight bend ratio of lower elbows on the stable fluidization performance of a new type of closely spaced liquid-solid circulating fluidized bed heat exchanger [J]. The Chinese Journal of Process Engineering, 2024, 24(9): 1016-1026. |
[5] | Rui ZHANG Qingbo YU Yidi LOU. Effect of flue gas recirculation rate on heating process of cement rotary kiln [J]. The Chinese Journal of Process Engineering, 2024, 24(9): 1027-1035. |
[6] | Nan TU Chiyu WANG Xiaoqun LIU Jiachen LIU Jiabin FANG. Numerical simulation of influence of multi-baffles on particle residence time distribution in cross-flow bubbling beds [J]. The Chinese Journal of Process Engineering, 2024, 24(9): 1047-1057. |
[7] | Jianyi CHEN Min XU Cang TONG Caifeng HUANG Xiulan HUAI. CFD-DEM-based simulation of Ca(OH)2/CaO thermochemical energy storage process in a novel baffled moving bed reactor [J]. The Chinese Journal of Process Engineering, 2024, 24(8): 894-903. |
[8] | Xiaohui YIN Hui LIU Xiangyu JI Jiaqing DU Rui WANG Lei HU. Numerical investigation of effect of martensitic transformation on residual stress of CMT cladding 9Cr-1Mo coating [J]. The Chinese Journal of Process Engineering, 2024, 24(8): 926-936. |
[9] | Ming ZHANG Huan SUN Qiangqiang WANG Jiaqing CHEN Chao SHANG Xiang LI Chunsheng WANG Lingzhen KONG. Study of flow field characteristics and separation performance of inline cyclone gas-liquid separator [J]. The Chinese Journal of Process Engineering, 2024, 24(7): 772-782. |
[10] | Guyu XING Junfei YUAN Lin WANG He JIANG Zicheng FENG Mengxuan WANG. Boiling flow and heat transfer in rectangular periodic expansion-constriction microchannels [J]. The Chinese Journal of Process Engineering, 2024, 24(7): 793-804. |
[11] | Biao LU Xingyin WANG Qingyun HU Yan CHEN Demin CHEN Jin GAO. Effect of oxygen-rich combustion conditions on heating process of slab in reheating furnace [J]. The Chinese Journal of Process Engineering, 2024, 24(7): 805-814. |
[12] | Ting YANG Yachao DONG Jian DU. Catalyst and reaction rate constant prediction methods of coupling reaction based on convolutional neural network [J]. The Chinese Journal of Process Engineering, 2024, 24(7): 833-842. |
[13] | Yi SUN Fuping QIAN Lingtao YU Yue WU Naijin HUANG Hao WU. Numerical study on heat transfer and resistance characteristics of heat transfer element of rotary heat exchanger [J]. The Chinese Journal of Process Engineering, 2024, 24(6): 670-680. |
[14] | Weinan MO Youyong SU Dongdong ZHU. Bed characterization and flow heat transfer simulation of fixed bed reactor with low tube to particle diameter ratios [J]. The Chinese Journal of Process Engineering, 2024, 24(6): 692-704. |
[15] | Xinyi ZHANG Ningwen XU Xiaoming LI Shuzhong WANG. Numerical simulationon centrifugal granulation characteristics of slag optimized by gas quenching winds [J]. The Chinese Journal of Process Engineering, 2024, 24(5): 523-532. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||