[1] Ainul A A, David R D, Shane P U, Peter J S. Electrically enhanced dewatering(EED) of particulate suspensions [J]. Colloids and Surfaces A, 2006, 209, 194-205.
[2] Rushton A, Ward A S, Holdich R G. Solid-Liquid Filtration and Separation Technology [M]. Weinheim: Wiley-VCH, 2000, 110-115.
[3] Wakeman R J, Tarleton E S. Filtration: Equipment Selection, Modelling and Process Simulation [M]. Oxford: Elsevier, 1998, 75-92.
[4] Wakeman R J, Tarleton E S. Solid/Liquid Separation: Scale-up of Industrial Equipment [M]. Oxford: Elsevier, 2005, 98-109.
[5] H?nchen M, Prigiobbe V, Baciocchil R, Mazzotti M. Precipitation in the Mg-carbonate system-effects of temperature and CO2 pressure [J]. Chem. Eng. Sci., 2008, 63, 1012-1028.
[6] Kloprogge J T, Martens W N, Nothdurft L, Duong L V, Webb G E. Low temperature synthesis and characterization of nesquehonite [J]. Journal of Materials Science Letters, 2003, 22, 825-829.
[7] K?nigsberger E, K?nigsberger L C, Gamsj?ger H. Low-temperature thermodynamic model for the system Na2CO3-MgCO3-CaCO3-H2O [J]. Geochim. Cosmochim. Acta., 1999, 63, 3105-3119 .
[8] Ballirano P, Vito C D, Ferrini V, Mignardi S. The thermal behavior and structural stability of nesquehonite, MgCO3?3H2O, evaluated by in situ laboratory parallel-beam X-ray powder diffraction: New constraints on CO2 sequestration within minerals [J]. J. Hazard. Mater., 2010, 178, 522-528.
[9] Ferrini V, Vito C D, Mignardi S. Synthesis of nesquehonite by reaction of gaseous CO2 with Mg chloride solution: Its potential role in the sequestration of carbon dioxide [J]. J. Hazard. Mater., 2009, 168, 832-837.
[10] Park A A. Carbon dioxide sequestration: Chemical and physical activation of aqueous carbonation of Mg-bearing minerals and pH swing process [D]. Columbus: The Ohio State University, 2005, 45-56.
[11] Wang Y, Li Z B, Demopoulos G P. Controlled precipitation of nesquehonite by the reaction of MgCl2 with (NH4)2CO3 at 303 K [J]. J. Cryst. Growth, 2007, 310, 1220-1227.
[12] Cheng W T, Li Z B. Controlled supersaturation precipitation of hydromagnesite for the MgCl2-Na2CO3 system at elevated temperatures: chemical modeling and experiment [J]. Ind. Eng. Chem. Res., 2010, 49, 1964-1974.
[13] Cheng W T, Li Z B. Precipitation of nesquehonite from homogeneous supersaturated solutions [J]. Crystal Research Technology, 2009, 44, 937-947.
[14] Cheng W T, Li Z B. Demopoulos G P. Effect of temperature on the preparation of magnesium carbonate hydrates by reaction of MgCl2 with Na2CO3 [J]. Chinese Journal of Chemical Engineering, 2009, 17, 661-669.
[15] Mark A S. The Chemistry and Technology of Magnesia [M]. New Jersey:John Wiley and Sons, 2006, 125-129.
[16] Wang L M. Improvement of performance of sedimentation filtration of Mg(OH)2 slurry [J]. Sea-lake Salt and Chemical Industry, 2002, 31, 22-25.
[17] Wang P, Du G X, Li F. Effect of flocculation of Mg(OH)2 slurry on its filtration property and washing property [J]. Industrial Mineral and Processing, 2008, 3, 20-22.
[18] Li J Q, Wang P, Liu L, Yang S H. Effect on filtration performance of Mg(OH)2 slurry by some factors [J]. Journal of Guizhou University of Technology (Nature Science Edition), 2007, 36, 32-39.
[19] Li Y L, Peng J P, Ni P, Tang R G. Effect of adding seed crystal and flocculant on magnesium hydrate deposition [J]. Inorganic Chemicals Industry, 2008, 40, 26-28.
[20] Besra L, Singh B P, Reddy P S R. Effect of flocculant on settling and filtration of iron ore sludge [J]. Minerals and Metallurgical Processing, 1996, 11, 402-405.
[21] Besra L, Sengupta D K, Roy S K. Particle characteristics and their influence on dewatering of kaolin, calcite and quartz suspensions [J]. International Journal Mineral Processing, 2000, 59, 89-112.
[22] S?hnel O, Garside J. Precipitation: Basic Principles and Industrial Applications [M], London: Butterworth-Heinmann, 1992, 60-68.
[23] Cheng Y S, Fang S R, Tierney J W, Chiang S H. Application of enhanced vacuum filtration to dewatering of fine coal refuse [J]. Separation Science and Technology, 23, 1988, 2113-2130.
[24] Svarovsky L. Solid-Liquid Separation [M], London: Butterworths, 1981, 35-42.
[25] Wakeman R J. Vacuum dewatering and residual saturation of incompressible filter cakes [J]. International Journal Mineral Processing, 1976, 3, 193-206.
[26] Wakeman R. The influence of particle properties on filtration [J]. Separation and Purification Technology, 2007, 58, 234-241.
[27] Ni L A, Yu A B, Lu G Q, Howes T. Simulation of the cake formation and growth in cake filtration [J]. Mining Engineering, 2006, 19, 1084-1097.
[28] Mihoubi D. Mechanical and thermal dewatering of residual sludge [J]. Desalination, 2004, 167, 135-139.
[29] Mihoubi D, Vaxelaire J, Zagrouba F, Bellagi A. Mechanical dewatering of suspension [J]. Desalination, 2003, 158, 259-265.
[30] Holdich R G. Solid-liquid separation equipment selection and modeling [J]. Minerals Engineering, 2003, 16, 75-83.
[31] Jenny N M, Gerg F. Dend-end filtration of yeast suspensions: Correlating specific resistance and flux data using artificial neural networks [J]. Journal of Membrane Science, 2006, 281, 325-333.
[32] Tiller F M, Cooper H. The role of porosity in filtration, Part V: Porosity variation in filter cakes [J]. AIChE Journal, 1962, 8, 445-449.
[33] Hulston J, Kretser R G, Scales P J. Effect of temperature on the dewatering of hematite suspensions [J]. International Journal Mineral Processing, 2004, 3, 269-279.
[34] Happel J. Viscous flow in multiparticle systems Slow motion of fluids relative to beds of spherical particles [J]. AIChE Journal, 1958, 4, 197-201.
[35] Sluis S V D, Leenhouts W P, Wesselingh J A. Filtration and washing of calcium sulphate/phosphoric acid slurries [J]. Filtration and Separation, 1989, 26, 105-112.
|