李柏松. 天然气净化用滤芯的气液过滤性能研究[D]. 中国石油大学(北京), 2009.
Li B S,Study on Gas-liquid Separation Performance of Filters for Natural Gas Purification [D]. China University of Petroleum (Beijing), 2009.
常程, 姬忠礼, 黄金斌,等. 气液过滤过程中液滴二次夹带现象分析[J]. 化工学报, 2015, 66(4):1344-1352.
Chang C, Ji Z L, Huang J B, et al. Analysis of re-entrainment in process of gas-liquid filtration[J]. CIESC Journal, 2015, 66(4):1344-1352.
Chang C, Ji Z, Liu C, et al. Permeability of filter cartridges used for natural gas filtration at high pressure [J]. Journal of Natural Gas Science & Engineering, 2016, 34:419-427.
Hajra M G, Mehta K, Chase G G. Effects of humidity, temperature, and nanofibers on drop coalescence in glass fiber media[J]. Separation & Purification Technology, 2003, 30(1):79-88.
Kampa D, Wurster S, Meyer J, et al. Validation of a new phenomenological “jump-and-channel” model for the wet pressure drop of oil mist filters [J]. Chemical Engineering Science, 2015, 122:150-160.
陈仕林, 刘震, 宫敬,等. 高压条件下聚结过滤滤芯性能的影响因素[J]. 油气储运, 2018(2).
Chen S L, Liu Z, Gong J, et al. Factors influencing the performance of filter element for coalescence filtration under high pressure[J].Oil & Gas Storage and Transportation,2018(2).
陈锋, 姬忠礼, 齐强强. 孔径梯度分布对亲油型滤材气液过滤性能的影响[J]. 化工学报, 2017, 68(4):1442-1451.
Chen F, Ji Z L, Qi Q Q. Influence of pore size distribution on gas-liquid filtration performance of oleophilic filters [J]. CIESC Journal, 2017, 38(9): 1442–1451.
Liu Z, Ji Z, Zhang J, et al. Influence of Processing Parameters on Gas-liquid Filtration Performance of Fibrous Filter Cartridge ☆[J]. Procedia Engineering, 2015, 102:911-920.
Charvet A, Gonthier Y, Gonze E, et al. Experimental and modelled efficiencies during the filtration of a liquid aerosol with a fibrous medium[J]. Chemical Engineering Science, 2010, 65(5):1875-1886.
Kampa D, Wurster S, Buzengeiger J, et al. Pressure drop and liquid transport through coalescence filter media used for oil mist filtration [J]. International Journal of Multiphase Flow, 2014, 58(58):313-324.
Wurster S, Kampa D, Meyer J, et al. Measurement of oil entrainment rates and drop size spectra from coalescence filter media [J]. Chemical Engineering Science, 2015, 132:72-80.
Wurster S, Meyer J, Kolb H E, et al. Bubbling vs. blow-off – On the relevant mechanism(s) of drop entrainment from oil mist filter media [J]. Separation & Purification Technology, 2015, 152:70-79.
Kolb H E, Meyer J, Kasper G. Flow velocity dependence of the pressure drop of oil mist filters[J]. Chemical Engineering Science, 2017, 166:107-114.
Jeffery A B, Bakis G, Skelton J. High-efficiency, self-supporting filter element made from fibers: US, US 5456836 A[P]. 1995.
Vasudevan G, Chase G G. Performance of B–E-glass fiber media in coalescence filtration [J]. Journal of Aerosol Science, 2004, 35(1):83-91.
Hutten I. Fiberrich -An Alternative to Phenolic Treated Filter Paper for Automatic Lube Oil Filtration [J]. FLUID PARTICLE SEPARATION JOURNAL, 1998, 11: 314-321.
Mcconnell R L, Meyer M F, Petke F D, et al. Polyester binders in nonwovens and other textile applications[J]. Journal of Coated Fabrics, 1987, 16(3): 199-208.
Liu Z, Ji Z, Shang J, et al. Improved Design of Two-stage Filter Cartridges for High Sulfur Natural Gas Purification [J]. Separation & Purification Technology, 2017.
Institution B S. Iso 8573-2 - Compressed Air - Part 4: – Part 2 Test Methods for Aerosol Oil Content [J].
Wurster S, Meyer J, Kasper G. On the relationship of drop entrainment with bubble formation rates in oil mist filters[J]. Separation & Purification Technology, 2017, 179:542-549.
|