欢迎访问过程工程学报, 今天是

过程工程学报 ›› 2022, Vol. 22 ›› Issue (5): 573-585.DOI: 10.12034/j.issn.1009-606X.221147

• 综述 • 上一篇    下一篇

低温甲醇水重整制氢催化剂研究进展

申展1, 江志东1, 张鹏飞1, 张子瑜2, 车海英1, 马紫峰1*   

  1. 1. 上海交通大学化学工程系,上海电化学能源器件工程技术研究中心,上海 200240 2. 上海博氢新能源科技有限公司,上海 200080
  • 收稿日期:2021-04-28 修回日期:2021-07-10 出版日期:2022-05-28 发布日期:2022-05-27
  • 通讯作者: 马紫峰 zfma@sjtu.edu.cn
  • 作者简介:申展(1999-),男,河南省汝州市人,硕士研究生,化学工程与技术专业,E-mail: 2636945916@qq.com;马紫峰,通讯联系人,E-mail: zfma@sjtu.edu.cn.
  • 基金资助:
    国家自然科学基金

Progress on catalysts for hydrogen production by low temperature methanol water reforming

Zhan SHEN1,  Zhidong JIANG1,  Pengfei ZHANG1,  Ziyu ZHANG2,  Haiying CHE1,  Zifeng MA1*   

  1. 1. Shanghai Electrochemical Energy Devices Research Center, Department of Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China 2. Shanghai Palcan Energy Technology Co., Ltd., Shanghai 200080, China
  • Received:2021-04-28 Revised:2021-07-10 Online:2022-05-28 Published:2022-05-27
  • Contact: Zi-Feng MA zfma@sjtu.edu.cn

摘要: 甲醇具有结构简单、含氢量高、产能大等优点,利用甲醇与水蒸气进行重整是一种节能高效的现场制氢方式。甲醇水蒸气重整(MSR)与燃料电池联用能够实现多场景应用,但由于反应温度较高(250~300℃),存在启动速度较慢、副产CO含量较高和热效率较低等问题。低温甲醇水重整(LT-Methanol Water Reforming, LT-MWR)包括低温甲醇水蒸气重整(LT-MSR)与液相甲醇水重整(Aqueous-phase Reforming of Methanol, APRM),反应通常在200℃以下进行,同时保持较高的反应活性,进而能够减少预热时间、减弱副反应发生,且能与燃料电池实现更强的热耦合。本工作首先介绍了商用催化剂优异的性能与存在的缺陷,然后对低温甲醇水重整制氢催化剂,诸如Cu基催化剂、贵金属催化剂与光协同催化剂的研究进展进行了回顾。归纳了低温铜基催化剂的改性策略,包括合成方法、结构设计与元素掺杂。对国内外商用CuZnAlOx催化剂结构与性能的测试表明,其转化率高和稳定性好,存在的缺陷是价格较贵且在低温区催化活性急剧下降。Cu基催化剂活性受温度影响较大,在低温区活性很低,但通过适当的改性能够实现其应用价值,其改性策略包括合成方法、结构设计与元素掺杂。贵金属催化剂低温下活性较高,但存在价格昂贵、合成复杂等缺点。光协同催化剂则是在光照条件下进行催化重整,尚处于研究阶段。对于Cu基催化剂,合成方法的改进能够大大改善催化剂的微观混合程度与可重现性。适当的结构设计可提升催化剂的比表面积与热稳定性。元素掺杂则能够提升活性组分的分散度,修饰催化剂表面结构。三种改性策略能够有效提升Cu基催化剂低温下甲醇重整制氢的性能,在保持较高活性的同时,降低CO副产物的含量。展望了低温甲醇水重整制氢催化剂的发展前景和挑战,对催化剂的开发与应用有指导意义。

关键词: 甲醇水蒸汽重整, 低温, 铜基催化剂, 氢能, 燃料电池

Abstract: Methanol is a promising energy carrier owing to its simple structure, high hydrogen content and huge production capacity. Methanol steam reforming (MSR) is an energy-saving and efficient on-site hydrogen production method. Combined with fuel cells, MSR can be applied in many fields. However, due to the high reaction temperature (250~300℃), there are some problems such as slow start-up, high CO content and low thermal efficiency. Low temperature methanol water reforming (LT-MWR), including LT-MSR and aqueous-phase reforming of methanol (APRM), means that the reaction proceeds below 200℃, and maintains high reaction activity, which can reduce the preheating time and the side reactions, and achieve stronger thermal coupling with fuel cells. In this review, the performance and defects of commercial catalysts are firstly introduced based on characterization results. The research of LT-MWR catalysts for hydrogen production is reviewed, including Cu-based catalysts, noble metal catalysts and photo-synergistic catalysts. The modification strategies for low temperature Cu-based catalysts are summarized, including synthesis methods, structure design and element doping. The commercial CuZnAlOx catalyst at home and abroad has the characteristics of high methanol conversion and good stability, despite its relatively high price and low activity below 200℃. Because the activity of Cu-based catalysts is greatly affected by temperature, the catalytic activity decreases sharply at low temperature. By appropriate modification, Cu-based catalysts can perform high activity at low temperature. Noble metal catalysts have high activity at low temperature, but they are expensive and the synthesis process is complex. Photo-synergistic catalysts are functional under the condition of light, which is still in the research stage. The synthesis method can strengthen the micromixing degree and reproducibility. Appropriate structure design can increase the specific surface area and thermal stability of the catalyst. Element doping enables better dispersion of active components and modifies the surface structure. Three modification strategies can effectively improve the performance of Cu-based catalyst for LT-MSR, reducing the content of CO content while maintaining high activity. Finally, the prospect and challenges of LT-MSR catalysts for hydrogen production are prospected.

Key words: methanol steam reforming, low temperature, Cu-based catalysts, hydrogen energy, fuel cell