欢迎访问过程工程学报, 今天是

过程工程学报 ›› 2022, Vol. 22 ›› Issue (12): 1729-1738.DOI: 10.12034/j.issn.1009-606X.221327

• 研究论文 • 上一篇    下一篇

不同结构微反应器下甲烷水蒸气重整制氢性能对比

刘俊伯, 郭欣*, 张朔昕, 吴棒   

  1. 华中科技大学能源与动力工程学院,煤燃烧国家重点实验室,湖北 武汉 430074
  • 收稿日期:2021-10-14 修回日期:2022-02-07 出版日期:2022-12-28 发布日期:2022-12-30
  • 通讯作者: 郭欣 guoxin@mail.hust.edu.cn
  • 基金资助:
    基于化学链制氢廉价高效载氧体制备工艺的研究

Comparison of hydrogen production from methane steam reforming in different microreactor configurations

Junbo LIU,  Xin GUO*,  Shuoxin ZHANG,  Bang WU   

  1. State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
  • Received:2021-10-14 Revised:2022-02-07 Online:2022-12-28 Published:2022-12-30
  • Contact: Xin -GUO guoxin@mail.hust.edu.cn

摘要: 微通道反应器是便携式制氢领域目前最有发展前景的技术之一。为了提高甲烷水蒸气重整在微反应器内制氢的效果,设计了三种不同结构的微反应器几何模型,分别为直管(Pipe)模型、平板圆弧弯道(FCC)模型和三纹内螺旋枪管(Tri-g ISB)模型,利用Ansys Fluent流体仿真软件结合甲烷水蒸气重整制氢的CHEMKIN反应机理文件对三种不同结构的微反应器进行了数值模拟分析。通过研究不同条件下微反应器出口气体组分变化可知,入口速度越小,CH4转化率和H2体积分数越高;S/C>3时,CH4转化率增大至80%以上、H2含量增加至73vol%以上;壁面温度越大,CH4转化率可稳定在99.9%,几乎完全转化,H2含量增大到77vol%以上,但温度过高会降低H2产量,增加CO含量。通过计算不同条件下微反应器达到稳定所需时间可知,随入口速度和S/C增加稳定时间均逐渐减小并趋于稳定,随壁面温度增加,稳定时间先减小后增加。通过对比三种微反应器可知,复杂结构可以强化微反应器的性能,但会增加微反应器达到稳定所需的时间。在微反应器性能方面:FCC模型最优,Pipe模型最差;而在稳定时间方面:随着结构复杂性增加稳定时间反而增长,Pipe模型最短,Tri-g ISB模型最长;微反应器结构的复杂程度不同,对性能的提升也不同,过于复杂的结构反而会抑制微反应器的性能。

关键词: 甲烷水蒸气重整, 氢气, 微反应器, 结构, 稳定时间, 转化率

Abstract: Microchannel reactors are currently one of the most promising technologies in the field of portable hydrogen production. In order to improve the effectiveness of methane steam reforming for hydrogen production in microreactors, three geometrical models of microreactors with different structures are designed, namely, pipe model, FCC model, and Tri-g ISB model. Numerical simulations of three different microreactors are carried out using Ansys Fluent fluid simulation software in conjunction with the CHEMKIN reaction mechanism file of hydrogen production from methane steam reforming. By studying the gas composition changes at the outlet of microreactors under different conditions, it can be seen that the smaller the inlet velocity is, the higher the CH4 conversion and H2 volume fraction are; When S/C>3, the higher the conversion rate of CH4 increases to more than 80%, and the content of H2 increases to more than 73vol%; The higher the temperature is, the more stable the CH4 conversion can be at 99.9%, almost completely transformed, and the H2 content increases to more than 77vol%. However, the higher the temperature is, the lower the H2 output will be, and the higher the CO content will be. By calculating the time required for the microreactor to reach stability under different conditions, it can be seen that with the increase of inlet velocity and S/C, the stability time gradually decreases and tends to be stable, and with the increase of wall temperature, the stability time first decreases and then increases. By comparing the three kinds of microreactors, it can be seen that the complex structure can enhance the performance of the micro reactor, but will increase the time required for the microreactor to reach stability. In terms of microreactor performance, FCC model is the best, and pipe model is the worst; In terms of stability time, the stability time increases with the increase of structural complexity. The pipe model is the shortest and the Tri-g ISB model is the longest; The complexity of the microreactor structure is different, and the performance improvement is also different. The overly complex structure will inhibit the performance of the microreactor.

Key words: methane steam reforming, hydrogen, microreactor, structure, stabilisation time, conversion