过程工程学报 ›› 2017, Vol. 17 ›› Issue (6): 1109-1118.DOI: 10.12034/j.issn.1009-606X.217144CSTR: 32067.14.jproeng.217144
• 综述 • 下一篇
吉明波1,2, 罗建泉1, 陈向荣1*, 万印华
收稿日期:
2017-02-23
修回日期:
2017-04-06
出版日期:
2017-12-20
发布日期:
2017-12-05
通讯作者:
陈向荣 xrchen@ipe.ac.cn
Mingbo JI1,2, Jianquan LUO1, Xiangrong CHEN1*, Yinhua WAN1
Received:
2017-02-23
Revised:
2017-04-06
Online:
2017-12-20
Published:
2017-12-05
Contact:
Xiang-rong N/AChen xrchen@ipe.ac.cn
摘要: 利用生物分子及其衍生物对有机分离膜进行仿生改性,是提高分离膜的亲水性、生物相容性、抗污染能力和特异选择能力的重要手段. 本工作对几种生物分子及其衍生物,如壳聚糖、肝素、磷酰胆碱、多巴胺等的结构和性能作了系统介绍,对各种改性方法进行了较详细的综述,最后简单介绍了改性膜的应用.
吉明波 罗建泉 陈向荣 万印华. 生物分子及其衍生物对分离膜的仿生改性研究进展[J]. 过程工程学报, 2017, 17(6): 1109-1118.
Mingbo JI Jianquan LUO Xiangrong CHEN Yinhua WAN. Recent Advance in Biomimetic Modification of Membranes with Biomolecules and Their Derivatives[J]. Chin. J. Process Eng., 2017, 17(6): 1109-1118.
[1] 刘茉娥等编著, 膜分离技术[M], 北京:化学工业出版社, 1998. [2] 王湛主编, 膜分离技术基础[M], 北京:化学工业出版社, 2006. [3] 徐又一,徐志康等编著, 高分子膜材料[M], 北京:化学工业出版社, 2005. [4] Rana, D., Matsuura, T., Surface modifications for antifouling membranes[J], Chem. Rev., 2010, 110(4):2448-2471. [5] Li, Q., Imbrogno, J., Belfort, G., et al., Making polymeric membranes antifouling via "grafting from" polymerization of zwitterions[J], J. Appl. Polym. Sci., 2015, 132(21):41781. [6] Huang, X., Wang, W., Liu, Y., et al., Treatment of oily waste water by PVP grafted PVDF ultrafiltration membranes[J], Chem. Eng. J., 2015, 273:421-429. [7] Jayalakshmi, A., Kim, I.-C., Kwon, Y.-N., Cellulose acetate graft-(glycidylmethacrylate-g-PEG) for modification of AMC ultrafiltration membranes to mitigate organic fouling[J], RSC Adv., 2015, 5(60):48290-48300. [8] Yue, W.-W., Li, H.-J., Xiang, T., et al., Grafting of zwitterion from polysulfone membrane via surface-initiated ATRP with enhanced antifouling property and biocompatibility[J], J. Membr. Sci., 2013, 446:79-91. [9] Hu, M.-X., Fang, Y., Xu, Z.-K., Glycosylated membranes: A promising biomimetic material[J], J. Appl. Polym. Sci., 2014, 131(2):39658. [10] Krajewska, B., Application of chitin- and chitosan-based materials for enzyme immobilizations: a review[J], Enzyme Microb. Technol., 2004, 35(2):126-139. [11] Rydberg, H.A., Kunze, A., Carlsson, N., et al., Peptide-membrane interactions of arginine-tryptophan peptides probed using quartz crystal microbalance with dissipation monitoring[J], Eur. Biophys. J., 2014, 43(6-7):241-253. [12] Wang, Y.-B., Gong, M., Yang, S., et al., Hemocompatibility and film stability improvement of crosslinkable MPC copolymer coated polypropylene hollow fiber membrane[J], J. Membr. Sci., 2014, 452:29-36. [13] Gupta, B., Revagade, N., Hilborn, J., Poly(lactic acid) fiber: An overview[J], Prog. Polym. Sci., 2007, 32(4):455-482. [14] Saeidlou, S., Huneault, M.A., Li, H., et al., Poly(lactic acid) crystallization[J], Prog. Polym. Sci., 2012, 37(12):1657-1677. [15] Moriya, A., Maruyama, T., Ohmukai, Y., et al., Preparation of poly(lactic acid) hollow fiber membranes via phase separation methods[J], J. Membr. Sci., 2009, 342(1):307-312. [16] Park, S., Gildersleeve, J.C., Blixt, O., et al., Carbohydrate microarrays[J], Chem. Soc. Rev., 2013, 42(10):4310-4326. [17] Dai, Z., Wan, L., Xu, Z., Surface glycosylation of polymeric membranes[J], Sci.China Ser. B, 2008, 51(10):901-910. [18] 杜维维, 浅谈壳聚糖及壳聚糖膜[J], 塑料包装, 2013, 23(2):25-28. [19] Dobosz, K.M., Kolewe, K.W., Schiffman, J.D., Green materials science and engineering reduces biofouling: approaches for medical and membrane-based technologies[J], Front. Microbiol., 2015, 6:196. [20] Linhardt, I.C.a.R.J., Heparin - Protein Interactions[J], Angew. Chem. Int. Ed., 2002, 41(3):390-412. [21] Mizrahy, S., Peer, D., Polysaccharides as building blocks for nanotherapeutics[J], Chem. Soc. Rev., 2012, 41(7):2623-2640. [22] Cheng, C., Nie, S., Li, S., et al., Biopolymer functionalized reduced graphene oxide with enhanced biocompatibility via mussel inspired coatings/anchors[J], J. Mater. Chem. B, 2013, 1(3):265-275. [23] Virtanen, J.A., Cheng, K.H., Somerharju, P., Phospholipid composition of the mammalian red cell membrane can be rationalized by a superlattice model[J], Proc. Natl. Acad. Sci. U. S. A., 1998, 95(9):4964-4969. [24] Ishihara, K., Ueda, T., Nakabayashi, N., Preparation of Phospholipid Polylners and Their Properties as Polymer Hydrogel Membranes[J], Polym. J., 1990, 22(5):355-360. [25] Iwasaki, Y., Ishihara, K., Cell membrane-inspired phospholipid polymers for developing medical devices with excellent biointerfaces[J], Sci. Technol. Adv. Mat., 2012, 13(6):064101. [26] Wang, M., Yuan, J., Huang, X., et al., Grafting of carboxybetaine brush onto cellulose membranes via surface-initiated ARGET-ATRP for improving blood compatibility[J], Colloids Surf. B. Biointerfaces, 2013, 103:52-58. [27] Shi, Q., Su, Y., Chen, W., et al., Grafting short-chain amino acids onto membrane surfaces to resist protein fouling[J], J. Membr. Sci., 2011, 366(1):398-404. [28] Fang, B., Ling, Q., Zhao, W., et al., Modification of polyethersulfone membrane by grafting bovine serum albumin on the surface of polyethersulfone/poly(acrylonitrile-co-acrylic acid) blended membrane[J], J. Membr. Sci., 2009, 329(1):46-55. [29] Matsuda, T., Ohya, S., Photoiniferter-based thermoresponsive graft architecture with albumin covalently fixed at growing graft chain end[J], Langmuir, 2005, 21(21):9660-9665. [30] Fehske, K.J., Muller, W.E., Wollert, U., The Location of Drug-Binding Sites in Human-Serum Albumin[J], Biochem. Pharmacol., 1981, 30(7):687-692. [31] Ulbricht, M., Riedel, M., Ultrafiltration membrane surfaces with grafted polymer 'tentacles': preparation, characterization and application for covalent protein binding[J], Biomaterials, 1998, 19(14):1229-1237. [32] Park K, M.D.F., Cooper S L., Acute surface‐induced thrombosis in the canine ex vivo model Importance of protein composition of the initial monolayer and platelet activation[J], J. Biomed. Mater. Res. A, 1986, 20(5):589-612. [33] Mulzer, S.R., Brash, J.L., Identification of Plasma-Proteins Adsorbed to Hemodialyzers during Clinical Use[J], J. Biomed. Mater. Res., 1989, 23(12):1483-1504. [34] Ulbricht, M., Riedel, M., Marx, U., Novel photochemical surface functionalization of polysulfone ultrafiltration membranes for covalent immobilization of biomolecules[J], J. Membr. Sci., 1996, 120(2):239-259. [35] 刘宗光, 屈树新, 翁杰, 聚多巴胺在生物材料表面改性中的应用[J], 化学进展, 2014, 27(2/3):212-219. [36] Dreyer, D.R., Miller, D.J., Freeman, B.D., et al., Perspectives on poly(dopamine)[J], Chem. Sci., 2013, 4(10):3796. [37] 吴夕, 缪., 维生素E和氧化应激在糖尿病中的作用[J], 医学综述, 2013, 18(23):4006-4008. [38] Li, L., Cheng, C., Xiang, T., et al., Modification of polyethersulfone hemodialysis membrane by blending citric acid grafted polyurethane and its anticoagulant activity[J], J. Membr. Sci., 2012, 405:261-274. [39] T, H., Mechanisms in blood coagulation, fibrinolysis and the complement system[M], Cambridge University Press, 1991. [40] He, S., Liu, W., Ye, J., et al., Grafting of oligodeoxynucleotide hairpin onto membrane surface to improve its anti-fouling performance[J], Desalination, 2015, 357:267-274. [41] Cheng, C., Li, S., Zhao, W., et al., The hydrodynamic permeability and surface property of polyethersulfone ultrafiltration membranes with mussel-inspired polydopamine coatings[J], J. Membr. Sci., 2012, 417:228-236. [42] Mohan, T., Kargl, R., Tradt, K.E., et al., Antifouling coating of cellulose acetate thin films with polysaccharide multilayers[J], Carbohydr. Polym., 2015, 116:149-158. [43] Gong, Y.K., Liu, L.P., Messersmith, P.B., Doubly biomimetic catecholic phosphorylcholine copolymer: a platform strategy for fabricating antifouling surfaces[J], Macromol. Biosci., 2012, 12(7):979-985. [44] Kazuhiko Ishihara, K.F., Yasuhiko Iwasaki, Nobuo Nakabayashi, Modfication of polysulfone with phospholipid polymer for improvement of the blood compatibility. Part 1. Surface characterization[J], Biomaterials, 1999, 20(17):1545-1551. [45] Han, B., Zhang, D., Shao, Z., et al., Preparation and characterization of cellulose acetate/carboxymethyl cellulose acetate blend ultrafiltration membranes[J], Desalination, 2013, 311:80-89. [46] Chen, Y., Zhang, Y., Zhang, H., et al., Biofouling control of halloysite nanotubes-decorated polyethersulfone ultrafiltration membrane modified with chitosan-silver nanoparticles[J], Chem. Eng. J., 2013, 228:12-20. [47] 陈向荣, 苏志国, 马光辉, et al., 智能型分离膜研究[J], 化学进展, 2006, 18(9):1218-1224. [48] Xiang, T., Zhang, L.S., Wang, R., et al., Blood compatibility comparison for polysulfone membranes modified by grafting block and random zwitterionic copolymers via surface-initiated ATRP[J], J. Colloid Interface Sci., 2014, 432:47-56. [49] Zhao, Y.F., Zhang, P.B., Sun, J., et al., Versatile antifouling polyethersulfone filtration membranes modified via surface grafting of zwitterionic polymers from a reactive amphiphilic copolymer additive[J], J. Colloid Interface Sci., 2015, 448:380-388. [50] Zhao, Y.-F., Zhu, L.-P., Yi, Z., et al., Zwitterionic hydrogel thin films as antifouling surface layers of polyethersulfone ultrafiltration membranes anchored via reactive copolymer additive[J], J. Membr. Sci., 2014, 470:148-158. [51] Zhang, C., Jin, J., Zhao, J., et al., Functionalized polypropylene non-woven fabric membrane with bovine serum albumin and its hemocompatibility enhancement[J], Colloids Surf. B. Biointerfaces, 2013, 102:45-52. [52] Chen, S.H., Chang, Y., Lee, K.R., et al., Hemocompatible control of sulfobetaine-grafted polypropylene fibrous membranes in human whole blood via plasma-induced surface zwitterionization[J], Langmuir, 2012, 28(51):17733-17742. [53] Hou, X., Zhang, T., Cao, A., A heparin modified polypropylene non-woven fabric membrane adsorbent for selective removal of low density lipoprotein from plasma[J], Polym. Adv. Technol., 2013, 24(7):660-667. [54] Liu, Y., Zhang, S., Wang, G., The preparation of antifouling ultrafiltration membrane by surface grafting zwitterionic polymer onto poly(arylene ether sulfone) containing hydroxyl groups membrane[J], Desalination, 2013, 316:127-136. [55] Kumar, R., Isloor, A.M., Ismail, A.F., et al., Performance improvement of polysulfone ultrafiltration membrane using N-succinyl chitosan as additive[J], Desalination, 2013, 318:1-8. [56] Dahe, G.J., Teotia, R.S., Kadam, S.S., et al., The biocompatibility and separation performance of antioxidative polysulfone/vitamin E TPGS composite hollow fiber membranes[J], Biomaterials, 2011, 32(2):352-365. [57] Qian, Y.-C., Ren, N., Huang, X.-J., et al., Glycosylation of Polyphosphazene Nanofibrous Membrane by Click Chemistry for Protein Recognition[J], Macromol. Chem. Phys., 2013, 214(16):1852-1858. [58] Qian Yang , M.-X.H., Zheng-Wei Dai , Jing Tian , and Zhi Kang Xu Fabrication of Glycosylated Surface on Polymer Membrane by UV-Induced Graft Polymerization for Lectin Recognition[J], Langmuir, 2006, 22(22):9345–9349. [59] Huang, X.J., Guduru, D., Xu, Z.K., et al., Immobilization of heparin on polysulfone surface for selective adsorption of low-density lipoprotein (LDL)[J], Acta Biomater., 2010, 6(3):1099-1106. [60] Huang, T., Zhang, M., Cheng, L., et al., A novel polysulfone-based affinity membrane with high hemocompatibility: preparation and endotoxin elimination performance[J], RSC Advances, 2013, 3(48):25982. |
[1] | 韦书贤 李灿华 马文青 章蓝月 李家茂 冒爱琴 何川 李明晖 朱伟长. 磁性片状nZVI-Fe3O4对Zn(II)和Pb(II)去除机理研究[J]. 过程工程学报, 2024, 24(3): 346-359. |
[2] | 杨强 王刚 李春山. Cu基催化剂表面改性及其催化二氧化碳加氢制甲醇性能研究[J]. 过程工程学报, 2024, 24(10): 1166-1176. |
[3] | 徐颖 姚鑫毅 宋永红 孙一平 邹晶晶 郭春彬. 煤气化渣改性工艺及吸附Cd2+性能[J]. 过程工程学报, 2024, 24(1): 47-57. |
[4] | 张鹏鹏 杨诚 龙红明 高翔鹏 李明阳. 浮选过程中壳聚糖及其衍生物的抑制机理研究进展[J]. 过程工程学报, 2023, 23(8): 1150-1160. |
[5] | 李苗苗 邱祥云 尹延鑫 张涛 戴作强. 钠离子电池层状氧化物正极材料改性研究进展[J]. 过程工程学报, 2023, 23(6): 799-813. |
[6] | 殷慧卿 武少杰 李明阳 龙红明 王松月 邱志新 高翔鹏. CCS-DETA凝胶球的制备及其对甲基橙的吸附性能[J]. 过程工程学报, 2023, 23(4): 590-601. |
[7] | 韩诚 武少杰 吴朝阳 李明阳 龙红明 高翔鹏. 钠离子电池负极材料的储钠机制及性能研究进展[J]. 过程工程学报, 2023, 23(2): 173-187. |
[8] | 王政德 高凯雄 张斌. 低温等离子体在电化学储能器件表面修饰的应用[J]. 过程工程学报, 2022, 22(9): 1159-1168. |
[9] | 赵晓腾 周新涛 罗中秋 韦宇 兰雄 陆艳. 二氧化钛基复合材料对常见染料的去除性能及其机理研究进展[J]. 过程工程学报, 2022, 22(9): 1169-1180. |
[10] | 陶润萍 董伟强 胡庆松 朱靖 王智鑫 徐轶群. Brij30/β-FeOOH/GO复合材料的可控构筑及其对盐酸四环素吸附性能[J]. 过程工程学报, 2022, 22(7): 979-988. |
[11] | 周育生 邱冠周 景建发 郑富强 王帅 陈凤 郭宇峰. 改性电炉钛渣矿相解构法制备富钛料新工艺研究[J]. 过程工程学报, 2022, 22(5): 651-659. |
[12] | 肖邦 曹青 马培勇 毕海林 李鹏程. 基于分子动力学模拟的羟基改性调控活性炭对甲苯吸附性能的作用机理研究[J]. 过程工程学报, 2022, 22(5): 660-670. |
[13] | 张凯伦 焦念明 张莹 郝鹏波 张国霞 王慧 李增喜. 双金属改性ZSM-5-USY复合分子筛催化裂解正己烷制备低碳烯烃[J]. 过程工程学报, 2022, 22(4): 458-468. |
[14] | 李明哲 马淑花 王建兵 王晓辉 姚同宇 刘晨旭. 改性粉煤灰对沙土物理特性改良效果研究[J]. 过程工程学报, 2022, 22(2): 204-213. |
[15] | 杨秀敏 王文 谢琼丹. 改性膨润土对废水中Cd(II)的吸附特征及吸附动力学研究[J]. 过程工程学报, 2022, 22(11): 1512-1520. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||