[1] Omoniyi OA, Dupont V. Optimised cycling stability of sorption enhanced chemical looping steam reforming of acetic acid in a packed bed reactor [J]. Applied Catalysis B-Environmental, 2019, 242: 397-409.
[2] Hong H, Jin HG. A novel solar thermal cycle with chemical looping combustion [J]. International Journal of Green Energy, 2005, 2(4): 397-407.
[3] Moon JH, Jo SH, Park SJ, et al. Carbon dioxide purity and combustion characteristics of oxy firing compared to air firing in a pilot-scale circulating fluidized bed [J]. Energy, 2019, 166: 183-192.
[4] Li J, Zhang H, Gao Z, et al. CO2 capture with chemical looping combustion of gaseous fuels: an overview [J]. Energy & Fuels, 2017, 31(4): 3475-3524.
[5] Ryu H-J. Selection of the best oxygen carrier for chemical looping combustion in a bubbling fluidized bed reactor [J]. Clean Technology, 2018, 24(1): 63-69.
[6] Kimball E, Lambert A, Fossdal A, et al. Reactor choices for chemical looping combustion (CLC) - dependencies on materials characteristics [J]. Energy Procedia, 2013, 37: 567-574.
[7] Patel HA, Byun J, Yavuz CT. Carbon dioxide capture adsorbents: chemistry and methods [J]. Chemsuschem, 2017, 10(7): 1303-1317.
[8] Cuadrat A, Abad A, Labiano F, et al. Ilmenite as oxygen carrier in a chemical looping combustion system with coal [J]. Energy Procedia, 2011, 4: 362-369.
[9] Mendiara T, Diego LF, Labiano F, et al. Behaviour of a bauxite waste material as oxygen carrier in a 500 Wth CLC unit with coal [J]. International Journal of Greenhouse Gas Control, 2013, 17: 170-182.
[10] Sun Z, Lu DY, Hughes RW, et al. O-2 uncoupling behaviour of ilmenite and manganese-modified ilmenite as oxygen carriers [J]. Fuel Processing Technology, 2018, 169: 15-23.
[11] Lee D, Bae D, Shun D, et al. Comparison of reduction reactivity of new oxygen carriers for chemical looping combustion system in a bubbling fluidized bed [J]. The Korean Hydrogen and New Energy Society, 2017, 28(5): 554-560.
[12] Jing D, Mattisson T, Ryden M, et al. Innovative oxygen carrier materials for chemical-looping combustion [J]. Energy Procedia, 2013, 37: 645-653.
[13] Scala F, Chirone R, Salatino P. Attrition phenomena relevant to fluidized bed combustion and gasification systems [J]. Woodhead Publishing Series in Energy, 2013, 30(1): 254–315.
[14] Cabello A, Gayan P, Labiano F, et al. On the attrition evaluation of oxygen carriers in chemical looping combustion [J]. Fuel Processing Technology, 2016, 148: 188-197.
[15] Qin W, Lin C, Cheng W, et al. Enhancing the activity of iron based oxygen carrier via surface controlled preparation for lignite chemical looping combustion [J]. Chemical Journal of Chinese Universities-Chinese, 2015, 36(1): 116-123.
[16] Nguyen HNT, Seemann M, Thunman H. Fate of polycyclic aromatic hydrocarbons during tertiary tar formation in steam gasification of biomass [J]. Energy & Fuels, 2018, 32(3): 3499-3509.
[17] Mattisson T, Johansson M, Lyngfelt A. The use of NiO as an OC in chemical looping combustion [J]. Fuel, 2006, 85: 736?747.
[18] Soo YH, Il CS, Park C, et al. Characteristics of redox of oxygen carriers with NiO/AiPO4 for chemical-looping combustion [J]. Applied Chemistry for Engineering, 2004, 15(2): 200-204.
[19] 梁志永. 铁基载氧体深层氧化CO以及积碳形成机理研究 [D]. 北京:华北电力大学; 2017.
[20] Li JH, Lin CF, Qin W, et al. Synergetic effect of mercury adsorption on the catalytic decomposition of CO over perfect and reduced Fe2O3 001 surface [J]. Acta Physico-Chimica Sinica, 2016, 32(11): 2717-2723.
[21] 覃吴, 林常枫, 龙东腾, 等. 高指数晶面结构氧化铁化学链燃烧反应活性及深层还原反应机理 [J]. 物理化学学报, 2015, 31(04): 667-675.
Qin W, Lin CF, Long DT, et al. Reaction activity and deep reduction reaction mechanism of a high index iron oxide surface in chemical looping combustion [J]. Acta Physico-Chimica Sinica, 2015, 31(04): 667-675.
[22] 白雪峰, 尹雪峰, 邓玉洁, 等. CaSO_4/膨润土载氧体煤直接化学链燃烧中PAHs的生成 [J]. 煤炭学报, 2017, 42(07): 1854-1862.
[23] 梁志永, 董长青, 覃吴, 等. 化学链燃烧中铁基载氧体性能优化研究综述 [J]. 现代化工, 2017, 37(02): 36-40.
[24] Veranth JM, Fletcher TH, Pershing DW, et al. Measurement of soot and char in pulverized coal fly ash [J]. Fuel, 2000, 79(9): 1067–1075.
[25] Richter H, Howard JB. Formation of polycyclic aromatic hydrocarbons and their growth to soot-a review of chemical reaction pathways [J]. Progress in Energy and Combustion Science, 2000, 26(5): 565–608.
[26] Blacha T, Domenico MD, Gerlinger P, et al. Soot predictions in premixed and non-premixed laminar flames using a sectional approach for PAHs and soot [J]. Combustion and Flame, 2012, 159(1): 181–193.
[27] Hansen N, Schenk M, Moshammer K, et al. Investigating repetitive reaction pathways for the formation of polycyclic aromatic hydrocarbons in combustion processes [J]. Combustion and Flame, 2017, 180: 250-261.
[28] Houben MP, Lange HC, Steenhoven AA. Tar reduction through partial combustion of fuel gas [J]. Fuel, 2005, 84: 817?824.
[29] Sim CY, Brown T, Chen Q, et al. Particle characterisation in chemical looping combustion [J]. Chemical Engineering Science, 2012, 69(1): 211-224.
[30] Jin H, Ishida M. A new type of coal gas fueled chemical looping combustion [J]. Fuel, 2004, 83: 2411?2417.
[31] Hua X, Wang W. Chemical looping combustion: A new low-dioxin energy conversion technology [J]. Journal of Environmental Sciences, 2015, 32: 135-145.
[32] Mantripragada HC, Rubin ES. Chemical looping for pre-combustion and post-combustion CO2 capture [J]. Energy Procedia, 2017, 114: 6403-6410.
[33] Haus J, Goltzsche M, Hartge EU, et al. Gasification kinetics of lignite char in a fluidized bed of reactive oxygen carrier particles [J]. Fuel, 2019, 236: 166-178. |