欢迎访问过程工程学报, 今天是

过程工程学报 ›› 2025, Vol. 25 ›› Issue (5): 445-458.DOI: 10.12034/j.issn.1009-606X.224299

• 研究论文 • 上一篇    下一篇

水泥回转窑内多物理场耦合模拟研究

关晶1,2, 田于杰2*, 刘银杰3, 李飞2,4*, 叶家元5, 许成文5, 卢春喜1,王维2,4, 何险峰2,4   

  1. 1. 中国石油大学(北京)重质油国家重点实验室,北京 102249 2. 中国科学院过程工程研究所介科学与工程全国重点实验室,北京 100190 3. 水泥制造绿色低碳技术安徽省重点实验室,合肥水泥研究设计院有限公司,安徽 合肥 230051 4. 中国科学院大学化工学院,北京 100049 5. 中国建筑材料科学研究总院有限公司,绿色建筑材料国家重点实验室,北京 100024
  • 收稿日期:2024-09-26 修回日期:2024-11-19 出版日期:2025-05-28 发布日期:2025-05-30
  • 通讯作者: 关晶 jguan@ipe.ac.cn

Multi-physical field coupling simulation study in cement rotary kiln

Jing GUAN1,2,  Yujie TIAN2*,  Yinjie LIU3,  Fei LI2,4*,  Jiayuan YE5,  Chengwen XU5,  Chunxi LU1,  #br# Wei WANG2,4,  Xianfeng HE2,4   

  1. 1. State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China 2. State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China 3. Anhui Key Laboratory of Green and Low-carbon Technology in Cement Manufacturing, Hefei Cement Research & Design Institute Co., Ltd., Hefei, Anhui 230051, China 4. School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China 5. State Key Laboratory of Green Building Materials, China Building Materials Academy Co., Ltd., Beijing 100024, China
  • Received:2024-09-26 Revised:2024-11-19 Online:2025-05-28 Published:2025-05-30

摘要: 水泥回转窑作为水泥生产过程中的关键设备,其内部的气相煤粉颗粒燃烧与固相水泥烧结反应同时进行,这两个过程对于水泥熟料产品的生成及产品质量具有决定性的影响。然而,由于二者之间的反应速率和流速差异较大,现有的模拟多数局限于对单一的固相烧结或气相煤粉燃烧反应过程研究,对二者之间的相互作用探讨较少。针对这一不足,提出一种创新的气固相耦合模拟方法,将窑内区域划分为三维气相煤粉燃烧区和一维固相水泥烧结区,分别进行独立模拟,并通过迭代计算实现两者之间的紧密耦合。耦合模拟方法有效克服了气相与固相间流速显著差异带来的模拟挑战,能够更全面地揭示窑内流体流动、热量传递及化学反应的相互作用机制,为回转窑这一复杂系统提供了一种多尺度耦合模拟方法。耦合模拟结果显示,相较于传统的单一一维或三维模拟,这种方法能显著提高模拟精确度,模拟结果与工厂实际熟料输出数据高度吻合,更真实地还原了工业窑内发生的反应过程,显著提升了模拟精度。可有效指导回转窑优化设计和操作流程,从而提高熟料产品质量,为水泥回转窑的仿真提供了一种准确、高效的模拟方法。

关键词: 水泥回转窑, 气固相耦合, 煤燃烧, 烧结, 数值模拟

Abstract: As a key equipment in the cement production process, the combustion of gas-phase pulverized coal particles and the sintering reaction of solid-phase cement are carried out at the same time, which has a decisive impact on the generation of cement clinker products and the quality of products. However, due to the large difference in reaction rate and flow rate between the two processes, most of the existing simulations are limited to the study of a single solid-phase sintering or gas-phase pulverized coal combustion reaction process, and the interaction between the two processes is rarely discussed. In view of this shortcoming, an innovative gas-solid phase coupling simulation method was proposed, which divided the kiln area into three-dimensional gas-phase pulverized coal combustion zone and one-dimensional solid-phase cement sintering zone, which were simulated independently, and the close coupling between the two processes was realized through iterative calculation. The coupled simulation method effectively overcame the simulation challenges caused by the significant difference in flow velocity between the gas phase and the solid phase, and can more comprehensively reveal the interaction mechanism of fluid flow, heat transfer and chemical reaction in the kiln, providing a multi-scale coupled simulation method for the complex system of rotary kiln. The coupled simulation results showed that compared with the traditional single one-dimensional or three-dimensional simulation, this method can significantly improve the simulation accuracy, and the simulation results were highly consistent with the actual clinker output data of the plant. It can effectively guide the optimal design and operation process of rotary kiln, so as to improve the quality of clinker products, and provide an accurate and efficient simulation method for the simulation of cement rotary kiln.

Key words: cement rotary kiln, gas-solid phase-coupling, coal combustion, sintering, numerical simulation