过程工程学报 ›› 2025, Vol. 25 ›› Issue (6): 579-589.DOI: 10.12034/j.issn.1009-606X.224392
熊文真1, 徐建新2, 熊英1*
Wenzhen XIONG1, Jianxin XU2, Ying XIONG1*
摘要: 电解铜精炼过程中,阳极板中铜含量对电解效率至关重要。以混合铜精矿和粗铜等15种元素质量作为自变量,阳极板的铜元素质量作为因变量,利用最大信息系数(MIC)分析了54个具有代表性的测试数据集中各元素间的非线性相关性。结果表明,混合铜精矿的As含量和粗铜(外购)的Sb含量与阳极板铜含量的相关性最高,MIC值分别约为0.8228和0.8362。基于此,构建了鲸鱼算法优化的最小二乘支持向量机(WOA-LSSVM)回归预测模型,对阳极板铜元素质量进行预测。WOA-LSSVM模型具有较高预测精度,R2达0.9245,均方根误差(RMSE)较小,WOA-LSSVM组合模型对阳极板铜含量的预测精度比其他模型高出4.45%~123.05%。非线性分析方法能够有效捕捉阳极铜生产过程中不同因素之间的复杂关系,结合非线性分析方法和机器学习技术,可以提高阳极铜质量控制的实时性和适应性。