[1] Shi W Q, Li S D, Li G R, et al. Investigation of main factors affecting the growth rate of Spirulina[J]. Optik - International Journal for Light and Electron Optics. 2016, 127(16): 6688-6694. DOI:10.1016/j.ijleo.2016.04.125.
[2] Vonshak A, Richmod A. Mass production of the blue-green alga spirulina: an overview[J]. Biomass. 1988. 15(4):233-247. DOI:10.1016/0144-4565(88)90059-5.
[3] Wang Z J, Zhang X W. Inhibitory effects of small molecular peptides from Spirulina (Arthrospira) platensis on cancer cell growth[J]. Food & Function. 2016, 7(2):781-788. DOI:10.1039/C5FO01186H.
[4] Ozyurt G, Uslu L, Yuvka I, et al. Evaluation of the cooking quality characteristics of pasta enriched with spirulina platensis[J]. Journal of food quality. 2015. 38(4):268-272. DOI: 10.1111/jfq.12142.
[5] Jafari S M A, Rabbani M, Emtyazjoo M, et al. Effect of dietary Spirulina platensis on fatty acid composition of rainbow trout (Oncorhynchus mykiss) fillet[J]. Aquaculture International. 2014, 22(4): 1307-1315. DOI: 10.1007/s10499-013-9748-0.
[6] Wu Q H, Liu L, Miron A, et al. The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: an overview[J]. Archives Toxicology. 2016, 90:1817-1840. DOI: 10.1007/s00204-016-1744-5.
[7] Yu J, Hu Y L, Xue M X, et al. Purification and Identification of Antioxidant Peptides from Enzymatic Hydrolysate of Spirulina platensis[J]. Journal of Microbiology Biotechnology. 2016, 26(7):1216-1223. DOI: 10.4014/jmb.1601.01033.
[8] Ali H E A, Shanab S M, Abo-state M A, et al. Evaluation of Antioxidants, Pigments and Secondary Metabolites Contents in Spirulina platensis[J]. Applied mechanics and materials, 2014, 625: 160-163.
[9] Khan Z, Bhadouria P, Bisen P S. Nutritional and therapeutic potential of Spirulina[J]. Current Pharmaceutical Biotechnology. 2005, 6(5):373-379.
[10] Huang Y, Liu J G, Wang H Y, et al. Treatment potential of a synergistic botanical pesticide combination for rotifer extermination during outdoor mass cultivation of Spirulina platensis[J]. Algal Research. 2014, 6:139-144. DOI: 10.1016/j.algal.2014.11.003.
[11] Morocho-jacome A L, Sato S, Capurro L D, et al. Simultaneous use of sodium nitrate and urea as nitrogen sources improves biomass composition of Arthrospira platensis cultivated in a tubular photobioreactor[J]. Engineering in life Science, 2016. 16(4):338-347. DOI: 10.1002/elsc.201500051.
[12] Bezerrar P, Matsudo M C, Sato S, et al. Effects of photobioreactor configuration, nitrogen source and light intensity on the fed-batch cultivation of Arthrospira (Spirulina) platensis. Bioenergetic aspects[J]. Biomass and bioenergy, 2012, 37:309-317. DOI: 10.1016/j.biombioe.2011.11.007.
[13] 于水淼, 贺乐, 吴霞, 等. 螺旋藻回用培养液组成对藻细胞生长的影响[J].过程工程学报. 2016,16(1):151-155.
[14] 田其英. 影响螺旋藻生长因素的研究进展[J]. 畜牧与饲料学. 2009, (6):113-115. DOI:10.3969/j.issn.1672-5190.2009.06.065.
[15] 鲍亦璐, 刘明, 丛威, 等. 碳酸氢铵为氮源对螺旋藻培养的影响[J]. 食品科学, 2012, 33(9):193-196.
[16] Rodrigues M S, Ferreiral S, Converti A. Fed-batch cultivation of Arthrospira (Spirulina) platensis : Potassium nitrate and ammonium chloride as simultaneous nitrogen sources[J]. Bioresource Technology. 2010, 101(12):4491-4498. DOI: 10.1016/j.biortech.2010.01.054.
[17] Jacome A L M, Converti A, Sato S, et al. Kinetic and thermodynamic investigation of Arthrospira (Spirulina) platensis fed-batch cultivation in a tubular photobioreactor using urea as nitrogen source[J]. Journal of chemical Technology and biotechnology. 2012, 87(11):1574-1582. DOI: 10.1002/jctb.3795.
[18] Cruz-martinez C, Jesus C K C, Matsudo M C, et al. Growth and composition of Arthrospira (spirulina) platensis in A tubular photobioreaction using ammonium nitrate as the nitrogen source in a fed-batch process[J]. Brazilian Journal of chemical Engineering. 2015, 32(2):347-356. DOI: 10.1590/0104-6632. 20150322s00003062 .
[19] Golmakani M, Rezaei K, Mazidi S, et al. γ-Linolenic acid production by Arthrospira platensis using different carbon sources[J]. European Journal of lipid Science and technology. 2012, 114(3):306-314. DOI: 10.1002/ejlt.201100264.
[20] 田华, 于斐, 汪金萍. 葡萄糖对螺旋藻生长的影响及机理分析[J].食品研究与开发. 2012, 33(7):161-163. DOI:0.3969/j.issn.1005-6521.2012.07.046.
[21] Chen C Y, Kao P C, Tan C H, et al. Using an innovative pH-stat CO2 feeding strategy to enhance cell rowth and C-phycocyanin production from Spirulina platensis[J]. Biochemical Engineering Journal 2016, 112:78-85. DOI; 10.1016/j.bej.2016.04.009.
[22] Ogbonda K H, Aminigo R E, Rebecca E, et al. Influence of temperature and pH on biomass production and protein biosynthesis in a putative Spirulina sp[J]. Bioresource Technology. 2007, 98(11):2207-2211. DOI: 10.1016/j.biortech.2006.08.028.
[23] Ismaielab M M S, Ei-ayoutyb Y M, Pierycey-normorea M. Role of pH on antioxidants production by Spirulina (Arthrospira) platensis[J]. Brazilian Journal of Microbiology. 2016, 47(2):298-304. DOI:10.1016/j.bjm.2016.01.003.
[24] CASAZZA A A, FERRARI P F, ALIAKBRIAN B, et al. Effect of UV radiation or titanium dioxide on polyphenol and lipid contents of Arthrospira (Spirulina) platensis[J]. Algal research. 2015, 12:308-315. DOI:10.1016/j.algal.2015.09.012.
[25] Ferrando M D, Andreu-moiner A. Acute toxicity of toluene, hexane, xylene, and benzene to the rotifers Brachionus calyciflorus and brachionus plicatilis[J]. Bulletin of environmental contamination and toxicology, 1992, 49(2):266-271.
[26] Huang Y, Lia L, Liu J G, et al. Botanical pesticides as potential rotifer-control agents in microalgal mass culture[J]. Algal Research. 2014, 4:62-69. DOI:10.1016/j.algal.2013.08.001.
[27] Huang Y, Liu J G, Wang H Y, et al. Treatment potential of a synergistic botanical pesticide combination for rotifer extermination during outdoor mass cultivation of Spirulina platensis[J]. Algal Research. 2014, 16:139-144. DOI: 10.1016/j.algal.2014.11.003.
[28] 孙颖颖, 王长海. 球等鞭金藻生长抑制物的抑藻机理[J]. 浙江大学学报,2009, 35(1):51-57. DOI: 10.3785/j.issn.1008-9209.2009.01.007.
[29] 于水淼, 吴霞, 汪建明, 等. 超滤去除螺旋藻自身生长抑制物最佳工艺研究[J]. 河南大学学报. 2016. 46(1):69-75. DOI: 10.3969/j.issn.1003-4978.2016.01.008.
[30] 王利蒙, 刘明, 薛升长, 等. 螺旋藻自身生长抑制物的去除及模型分析[J]. 过程工程学. 2012, 12(3):478-483.
[31] Cone G, Lehmann B, Dussap C, et al. Uptake of Macrominerals and Trace Elements by the Cyanobacterium Spirulina platensis (Arthrospira platensis PCC 8005) Under Photoautotrophic Conditions: Culture Medium Optimization[J]. Biotechnology and Bioengineering. 2003, 81(5):588-593. DOI: 10.1002/bit.10504.
[32] 曹松屹, 刘慧, 张少斌. 重金属对螺旋藻生长的影响研究进展. 食品研究与发展. 2011, 32(6):171-172.
[33] 陈填烽, 崔小峰, 杨芳, 等. 分次加硒法培养高富硒量螺旋藻及其对藻体光合色素合蛋白质含量影响的研究[J]. 食品与发酵工业, 2005, 31(8): 48-51. DOI: 10.3321/j.issn:0253-990X.2005.08.013.
[34] 李永强, 龚利媚, 蔡鹰, 等. 几种常见的重金属对螺旋藻生长的影响[J]. 轻工科技. 2015, (2):97-98.
[35] 张少斌, 穆杨, 刘慧, 等. 重金属离子铬(Ⅵ)对螺旋藻生长的影响[J]. 江西农业学报. 2012. (2):145-146. DOI: 10.3969/j.issn.1001-8581.2012.02.045.
[36] 李勇勇, 赵楠, 李善策, 等. 重金属铅离子(Pb2+)对两株螺旋藻生长影响的研究[J]. 生物学杂志. 2013, 30(4):37-41. DOI: 10.3969/j.issn.2095-1736.2013. 04.037.
[37] 李日强, 王翠红. 钝顶螺旋藻对五种元素生物富集作用的研究[J]. 山西大学学报, 2001, (2):167-169. DOI: 10.3969/j.issn.0253-2395.2001.02.023.
[38] 田华,王金萍,张义明. 螺旋藻富碘培养效果及现状[J]. 中国酿造. 2011, (8):16-18. DOI: 10.3969/j.issn. 0254-5071.2011.08.005.
[39] Tolgal G, Aysegu Z, Ak L. The Growth of Spirulina platensis in Different Culture Systems Under Greenhouse Condition[J]. Turkish Journal of Biology. 2007. 31(1):47-52.
[40] 张少斌, 王龙, 刘光, 等. 维生素B5对螺旋藻生长及藻胆蛋白含量的影响[J]. 中国饲料. 2013, (13):18-19. DOI: 10.3969/j.issn.1004-3314.2013.13.006.
[41] 向文洲, 李涛, 吴华莲, 等. 海水螺旋藻产业发展战略研究[J]. 广西科学. 2014, (6):573-579. DOI: 10.3969/j.issn.1005-9164.2014.06.003.
|